TMS 165/MSA350 Stochastic Calculus Part I Fall 2010 Written Exam Tuesday 19 October 8.30 am - 1.30 pm

Teacher: Patrik Albin.
Jour: Krzysztof Bartoszek.
Aids: None.
Grades: 12000 points (40%) out of the full score 30000 points to pass the exam.
Motivations: All answers/solutions must be motivated.
Througout this exam $B=\{B(t)\}_{t \geq 0}$ is a Brownian motion. And Good Luck to you all!
Task 1. For two functions $f, g:[0, \infty) \rightarrow \mathbb{R}$ we know the values of the quadratic variations $[f+g, f+g](t)$ and $[f-g, f-g](t)$ at a time $t>0$. Based on this information only (but knowing nothing more than that about f and g), which of the quantities $[f, f](t)$, $[g, g](t)$ and $[f, g](t)$ can we calculate the value of (if any)? (5000 points)

Task 2. Given a fixed time $T>0$, show that $\{B(t+T)-B(T)\}_{t \geq 0}$ is a Brownian motion. (5000 points)

Task 3. Let a function $\mathbb{R} \times[0, \infty) \ni(x, t) \curvearrowright f(x, t) \in \mathbb{R}$ have continuous partial derivatives $\partial f / \partial x, \partial f / \partial t, \partial^{2} f / \partial x^{2}, \partial^{2} f / \partial x \partial t$ and $\partial^{2} f / \partial t^{2}$ of the first and second order. Under which additional conditions on f is $\{f(B(t), t)\}_{t \geq 0}$ a martingale? (5000 points)

Task 4. Remember the definition of the stochastic logarithm $\{\mathcal{L}(X)(t)\}_{t \geq 0}$ of a strictly positive Itô process $\{X(t)\}_{t \geq 0}$ as the solution to the equation

$$
d X(t)=X(t) d \mathcal{L}(X)(t) \quad \text { for } t>0, \quad \mathcal{L}(X)(0)=0
$$

Find the stochastic logarithm of $\left\{\mathrm{e}^{B(t)}\right\}_{t \geq 0}$. (5000 points)
Task 5. A solution $\{X(t)\}_{t \geq 0}$ to an SDE $d X(t)=\mu(X(t) d t+\sigma(X(t)) d B(t)$ for $t>0$, $X(0)=X_{0}$, is a stationary process if X_{0} has probability density function
$f_{X_{0}}(x)=\frac{1}{\sigma(x)^{2}} \exp \left\{\int_{0}^{x} \frac{2 \mu(y)}{\sigma(y)^{2}} d y\right\} /\left(\int_{-\infty}^{\infty} \frac{1}{\sigma(z)^{2}} \exp \left\{\int_{0}^{z} \frac{2 \mu(y)}{\sigma(y)^{2}} d y\right\} d z\right) \quad$ for $x \in \mathbb{R}$. Find an SDE of the type $d X(t)=\sigma(X(t)) d B(t)$ for $t>0, X(0)=X_{0}$, the solution of which is a stationary process. (5000 points)

Task 6. Write up explicitely the Euler method to solve numerically the Black-Scholes SDE $d X(t)=r X(t) d t+\sigma X(t) d B(t)$ for $t>0, X(0)=X_{0}$, where $r \in \mathbb{R}$ and $\sigma>0$ are constants. What convergence properties can be expected? (5000 points)

TMS 165/MSA350 Stochastic Calculus Part I Fall 2010 Solutions to Written Exam Tuesday 19 October

Task 1. To know the values of $[f+g, f+g](t)$ and $[f-g, f-g](t)$ is equivalent to know the values of $\frac{1}{4}([f+g, f+g](t)-[f-g, f-g](t))=[f, g](t)$ and $\frac{1}{2}([f+g, f+g](t)+[f-g, f-g](t))$ $=[f, f](t)+[g, g](t)$. Hence we can say what is the value of $[f, g](t)$, but not what is the values of $[f, f](t)$ or $[g, g](t)$ (as we know the value of the sum of these two only).

Task 2. Since $\{B(t+T)-B(T)\}_{t \geq 0}$ is a continuous process (as a function of t) with $(B(t+T)-B(T))-(B(s+T)-B(T))=B(t+T)-B(s+T) N(0, t-s)$ distributed for $0 \leq s \leq t$, we need only show that the process has independents increments. That this in turn is the case follows from noting that $(B(t+T)-B(T))-(B(s+T)-B(T))=B(t+T)-B(s+T)$ is independent of $\mathcal{F}_{s+T}^{B}=\sigma(B(u): u \leq s+T)$ for $0 \leq s \leq t$, and therefore in particular independent of $\sigma(B(u+T)-B(T): u \leq s) \subseteq \mathcal{F}_{s+T}^{B}$. Alternativley, it is enough to check that $\{B(t+T)-B(T)\}_{t \geq 0}$ is a zero-mean Gaussian process with the same covariance function as Brownian motion.

Task 3. Since Itô's formula shows that
$f(B(t), t)=f(B(0), 0)+\int_{0}^{t}\left(\frac{\partial f}{\partial t}(B(s), s)+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(B(s), s)\right) d s+\int_{0}^{t} \frac{\partial f}{\partial x}(B(s), s) d B(s)$ for $t \geq 0$, we see that $\{f(B(t), t)\}_{t \geq 0}$ is a martingale if $\frac{\partial f(x, t)}{\partial t}+\frac{1}{2} \frac{\partial^{2} f(x, t)}{\partial x^{2}}=0 \quad$ and $\quad \int_{0}^{t} \mathbf{E}\left\{\left(\frac{\partial f}{\partial x}(B(s), s)\right)^{2}\right\} d s<\infty \quad$ for $(x, t) \in \mathbb{R} \times[0, \infty)$.

Task 4. As the stochastic exponential of $\left\{\mathcal{L}\left(\mathrm{e}^{B}\right)(t)\right\}_{t \geq 0}$ must be $\left\{\mathrm{e}^{B(t)}\right\}_{t \geq 0}$ (by an inspection of the definition of stochastic logarithm), we see that $\mathcal{L}\left(\mathrm{e}^{B}\right)(t)=B(t)+t / 2$.

Task 5. We may take $\sigma(x)=\max \{1,|x|\}$ and $f_{X_{0}}(x)=1 /\left(4 \max \left\{1,|x|^{2}\right\}\right)$.
Task 6. See Stig Larsson's lecture notes.

