TMS165/MSA350 Stochastic Calculus Part I

Written Exam Tuesday 18 October 20118.30 am-12.30 am

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: None.
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4,21 points (70%) for grade VG and 24 points $(80 \%$) for grade 5 , respectively.

Motivations: All answers/solutions must be motivated.
Througout this exam $B=\{B(t)\}_{t \geq 0}$ is a Brownian motion. And Good Luck to you all!
Task 1. Let X be a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ [where Ω is the sample space of all possible outcomes of a random experiment, \mathcal{F} is the σ-field of those subsets of Ω that are events and \mathbf{P} is a probability measure defined on $(\Omega, \mathcal{F})]$. Prove that $\mathbf{E}\{\mathbf{E}\{X \mid \mathcal{G}\}\}=\mathbf{E}\{X\}$ for any σ-field \mathcal{G} that is contained in \mathcal{F} and that $\mathbf{E}\{X \mid \mathcal{G}\}=\mathbf{E}\{X\}$ in the particular case when $\mathcal{G}=\{\emptyset, \Omega\}$. (5 points)

Task 2. Let $B_{1}=\left\{B_{1}(t)\right\}_{t \geq 0}$ and $B_{2}=\left\{B_{2}(t)\right\}_{t \geq 0}$ be independent Brownian motions. Show that $\left[B_{1}, B_{2}\right](t)=0$ for $t \geq 0$. [Hint: Use the polarization identity together with the easily verified fact that $\left(B_{1}+B_{2}\right) / \sqrt{2}$ is also a Brownian motion.] (5 points)

Task 3. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a two times continuously differentiable function. Show that $[g(B), B](t)=\int_{0}^{t} g^{\prime}(B(s)) d s$ for $t \geq 0 . \quad$ (5 points)

Task 4. Find a diffusion type SDE that has solution $X(t)=B(t)^{3}$.
(5 points)
Task 5. Suppose that we have observed the solution $\{X(t)\}_{t \in[0,10]}$ to the SDE

$$
d X(t)=\alpha d t+\sigma X(t) d B(t) \quad \text { for } t \in[0,10], \quad X(0)=1
$$

where $\alpha, \sigma>0$ are unknown constants. How can α be estimated?
Task 6. Let $\{X(s)\}_{s \in[t, T]}$ solve the SDE

$$
d X(s)=\mu(X(s), s) d s+\sigma(X(s), s) d B(s) \quad \text { for } s \in[t, T], \quad X(t)=x
$$

Show that under suitable technical constraints on the coefficients $\mu(x, t)$ and $\sigma(x, t)$ of the SDE , a solution $f(x, t)$ to the PDE
$\mu(x, t) \frac{\partial f(x, t)}{\partial x}+\frac{\sigma(x, t)^{2}}{2} \frac{\partial^{2} f(x, t)}{\partial x^{2}}+\frac{\partial f(x, t)}{\partial t}=k(x, t) \quad$ for $t \in[0, T], \quad f(x, T)=g(x)$, must take the form $f(x, t)=\mathbf{E}\left\{g(X(T))-\int_{t}^{T} k(X(s), s) d s \mid X(t)=x\right\}$. (5 points)

TMS165/MSA350 Stochastic Calculus Part I

Solutions to Written Exam Tuesday 18 October 2011

Task 1. By definition we have $\mathbf{E}\left\{I_{A} \mathbf{E}\{X \mid \mathcal{G}\}\right\}=\mathbf{E}\left\{I_{A} X\right\}$ for any event $A \in \mathcal{G}$. Taking $A=\Omega$, so that $I_{A}(\omega)=1$ for all $\omega \in \Omega$, we get $\mathbf{E}\{\mathbf{E}\{X \mid \mathcal{G}\}\}=\mathbf{E}\{X\}$.

By definition $\mathbf{E}\{X \mid\{\emptyset, \Omega\}\}$ is the unique $\{\emptyset, \Omega\}$-measurable random variable that satisfies $\mathbf{E}\left\{I_{A} \mathbf{E}\{X \mid\{\emptyset, \Omega\}\}\right\}=\mathbf{E}\left\{I_{A} X\right\}$ for $A \in\{\emptyset, \Omega\}$. It follows that $\mathbf{E}\{X \mid\{\emptyset, \Omega\}\}=$ $\mathbf{E}\{X\}$ as $\mathbf{E}\{X\}$ is $\{\emptyset, \Omega\}$-measurable (as is any non-random constant) and $\mathbf{E}\left\{I_{A} \mathbf{E}\{X\}\right\}$ $=\mathbf{E}\left\{I_{A} X\right\}$ holds trivially for $A=\emptyset$ and $A=\Omega$ with values 0 and $\mathbf{E}\{X\}$, respectively.

Task 2. By polarization together with the fact that BM has quadratic variation t we have $\left[B_{1}, B_{2}\right](t)=\frac{1}{2}\left(\left[B_{1}+B_{2}, B_{1}+B_{2}\right](t)-\left[B_{1}, B_{1}\right](t)-\left[B_{2}, B_{2}\right](t)\right)=\frac{1}{2}\left(2\left[\left(B_{1}+\right.\right.\right.$ $\left.\left.\left.B_{2}\right) / \sqrt{2},\left(B_{1}+B_{2}\right) / \sqrt{2}\right](t)-\left[B_{1}, B_{1}\right](t)-\left[B_{2}, B_{2}\right](t)\right)=\frac{1}{2}(2 t-t-t)=0$.

Task 3. By the definition of quadratic covariation together with Itô's formula we have $d[g(B)(t), B(t)]=d g(B(t)) d B(t)=\left(g^{\prime}(B(t)) d B(t)+\frac{1}{2} g^{\prime \prime}(B(t)) d t\right) d B(t)=g^{\prime}(B(t))$ $\times(d B(t))^{2}+\frac{1}{2} g^{\prime \prime}(B(t)) d t d B(t)=g^{\prime}(B(t)) d t+0$, so that $[g(B), B](t)=[g(B)(t), B(t)]$ $=[g(B), B](0)+\int_{0}^{t} g^{\prime}(B(s)) d s=\int_{0}^{t} g^{\prime}(B(s)) d s$.

Task 4. By Itô's formula $X(t)=B(t)^{3}$ satisfies $d X(t)=d\left(B(t)^{3}\right)=3 B(t)^{2} d B(t)+$ $3 B(t) d t=3 X(t)^{2 / 3} d B(t)+3 X(t)^{1 / 3} d t$. Hence the diffusion type SDE

$$
d X(t)=\mu(X(t), t) d t+\sigma(X(t), t) d B(t) \quad \text { for } t>0, \quad X(0)=x_{0},
$$

has solution $X(t)=B(t)^{3}$ for $\mu(x, t)=3 x^{1 / 3}, \sigma(x, t)=3 x^{2 / 3}$ and $x_{0}=0$.
Task 5. In the language of Section 10.6 in Klebaner's book, with $d X(t)=\alpha d t+$ $\sigma X(t) d B(t)$ for a P-BM B and $d X(t)=\sigma X(t) d W(t)$ for a \mathbf{Q}-BM W, the likelihood $d \mathbf{P} / d \mathbf{Q}=\exp \left\{\int_{0}^{10}\left(\alpha /\left(\sigma^{2} X(t)^{2}\right)\right) d X(t)-\frac{1}{2} \int_{0}^{10}\left(\alpha^{2} /\left(\sigma^{2} X(t)^{2}\right)\right) d t\right\}$ has derivative with respect to α given by $\sigma^{-2}\left(\int_{0}^{10} X(t)^{-2} d X(t)-\alpha \int_{0}^{10} X(t)^{-2} d t\right)(d \mathbf{P} / d \mathbf{Q})$, which is zero for the maximum likelihood α-estimator $\alpha=\left(\int_{0}^{10} X(t)^{-2} d X(t)\right) /\left(\int_{0}^{10} X(t)^{-2} d t\right)$.

Task 6. If f solves the PDE, then Itô's formula shows that $\mathbf{E}\{g(X(T)) \mid X(t)=x\}=$ $\mathbf{E}\{f(X(T), T) \mid X(t)=x\}=\mathbf{E}\left\{f(X(t), t)+\int_{t}^{T}\left(\frac{\partial f}{\partial x}(\mu d s+\sigma d B(s))+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}} \sigma^{2} d s+\right.\right.$ $\left.\left.\frac{\partial f}{\partial t} d s \right\rvert\, X(t)=x\right\}=f(x, t)+\mathbf{E}\left\{\int_{t}^{T} k d s \mid X(t)=x\right\}+\mathbf{E}\left\{\left.\int_{t}^{T} \frac{\partial f}{\partial x} \sigma d B \right\rvert\, X(t)=x\right\}=$ $f(x, t)+\mathbf{E}\left\{\int_{t}^{T} k(X(s), s) d s \mid X(t)=x\right\}$ as $\left\{\int_{t}^{s} \frac{\partial f}{\partial x} \sigma d B\right\}_{s \in[t, T]}$ is a martingale.

