TMS165/MSA350 Stochastic Calculus Part I Written exam Wednesday 11 April 2012 8.30 am - 12.30 am

TEACHER AND JOUR: Patrik Albin, telephone 070 6945709.

AIDS: None.

GRADES: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated.

Througout this exam $B = \{B(t)\}_{t \ge 0}$ is a Brownian motion. And Good Luck to you all!

Task 1. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a bounded function that has continuous partial derivatives of all orders. State conditions that are necessary and sufficient for $\{f(B(t)^2, t)\}_{t\geq 0}$ to be a martingale wrt. the filtration $\{\mathcal{F}_t^B\}_{t\geq 0}$ generated by B. (5 points)

Task 2. Calculate the covariation process $\{[\sin(B(t)), \cos(B(t))]\}_{t\geq 0}$. (5 points)

Task 3. Consider the stochastic logarithm of the stochastic exponential $\{\mathcal{L}(\mathcal{E}(X(t)))\}_{t\geq 0}$ of an Itô process $\{X(t)\}_{t\geq 0}$. Is it true or not that $\mathcal{L}(\mathcal{E}(X(t))) = X(t)$? (The answer must be supported by a full motivation!) (5 points)

Task 4. Show that the stochastic process $\{W(t)\}_{t\geq 0}$ given by W(0) = 0 and W(t) = t B(1/t) for t > 0 is a Brownian motion. (5 points)

Task 5. Let X be a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ that has a so called Laplace distribution under the probability measure \mathbf{P} , which is to say that X has probability density function $f_X(x) = \frac{1}{2} e^{-|x|}$ for $x \in \mathbb{R}$. Find a new probability measure \mathbf{Q} on the sample space and σ -field (Ω, \mathcal{F}) such that X is standard normal N(0, 1)-distributed under \mathbf{Q} . (5 points)

Task 6. Consider a so called fully implicit numerical scheme given by

 $Y_0 = 1$ and $Y_k = Y_{k-1} - Y_k (t_k - t_{k-1}) + Y_k (B(t_k) - B(t_{k-1}))$ for $k = \{1, \dots, n\}$. As the grid $0 = t_0 < t_1 < \dots < t_n = T$ becomes finer and finer, what SDE will the above scheme become an approximative numerical solution of? (5 points)

TMS165/MSA350 Stochastic Calculus Part I

Solutions to written exam Wednesday 11 April 2012

Task 1. Writing $F(x,t) = f(x^2,t)$ we have $df(B(t)^2,t) = dF(B(t),t) = F'_x(B(t),t)$ $dB(t) + \frac{1}{2}F''_{xx}(B(t),t) dt + F'_t(B(t),t) dt$, so that $f(B(t)^2,t)$ is a martingale iff. $\frac{1}{2}F''_{xx}(x,t) + F'_t(x,t) = 2x^2 f''_{xx}(x^2,t) + f'_x(x^2,t) + f'_t(x^2,t) = 0.$

Task 2. Since $d[\sin(B(t)), \cos(B(t))] = d(\sin(B(t))) d(\cos(B(t))) = (\cos(B(t)) dB(t) - \frac{1}{2} \sin(B(t)) dt) (-\sin(B(t)) dB(t) - \frac{1}{2} \cos(B(t)) dt) = -\cos(B(t)) \sin(B(t)) dt$ we get $[\sin(B(t)), \cos(B(t))] = -\int_0^t \sin(B(s)) \cos(B(s)) ds.$

Task 3. As $\mathcal{E}(X(t)) = e^{X(t) - X(0) - \frac{1}{2}[X(t), X(t)]}$ [so that in particular $\mathcal{E}(X(0)) = 1$] and $\mathcal{L}(U(t)) = \log(U(t)/U(0)) + \frac{1}{2} \int_0^t U(s)^{-2} d[U(s), U(s)]$, we get $\mathcal{L}(\mathcal{E}(X(t))) = X(t) - X(0) - \frac{1}{2}[X(t), X(t)] + \frac{1}{2} \int_0^t \mathcal{E}(X(s))^{-2} (\mathcal{E}(X(s)) dX(s))^2 = X(t) - X(0)$, so the answer is yes if X(0) = 0 but no otherwise.

Task 4. As W(t) clearly is a zero-mean Gaussian process it is enough to check that it has the same covariance function $\mathbf{E}\{B(s), B(t)\} = \min(s, t)$ as has Brownian motion (cf. Theorem 3.3 in Klebaner's book). However, $\mathbf{E}\{W(s), W(t)\} = \mathbf{E}\{s B(1/s), t B(1/t)\} = st \min(1/s, 1/t) = \min(s, t)$.

Task 5.
$$\mathbf{Q}(A) = \int_A 2 e^{|X|} \frac{1}{\sqrt{2\pi}} e^{-X^2/2} d\mathbf{P}$$
 for $A \in \mathcal{F}$.

Task 6. The scheme gives an approximate solution to the SDE dY(t) = -Y(t) dt + Y(t) dB(t) + dY(t) dB(t) = -Y(t) dt + Y(t) dB(t) + (-Y(t) dt + Y(t) dB(t) + dY(t) dB(t))dB(t) = Y(t) dB(t) for $t \in [0, T]$ with initial value Y(0) = 1, that is to say, an approximation of the stochastic exponential of B.