TMS165/MSA350 Stochastic Calculus Part I

Written exam Wednesday 11 April 20128.30 am - 12.30 am

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: None.
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

Motivations: All answers/solutions must be motivated.
Througout this exam $B=\{B(t)\}_{t \geq 0}$ is a Brownian motion. And Good Luck to you all!
Task 1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a bounded function that has continuous partial derivatives of all orders. State conditions that are necessary and sufficient for $\left\{f\left(B(t)^{2}, t\right)\right\}_{t \geq 0}$ to be a martingale wrt. the filtration $\left\{\mathcal{F}_{t}^{B}\right\}_{t \geq}$ generated by B. (5 points)

Task 2. Calculate the covariation process $\{[\sin (B(t)), \cos (B(t))]\}_{t \geq 0}$.
Task 3. Consider the stochastic logarithm of the stochastic exponential $\{\mathcal{L}(\mathcal{E}(X(t)))$ $\}_{t \geq 0}$ of an Itô process $\{X(t)\}_{t \geq 0}$. Is it true or not that $\mathcal{L}(\mathcal{E}(X(t)))=X(t)$? (The answer must be supported by a full motivation!) (5 points)

Task 4. Show that the stochastic process $\{W(t)\}_{t \geq 0}$ given by $W(0)=0$ and $W(t)=$ $t B(1 / t)$ for $t>0$ is a Brownian motion.

Task 5. Let X be a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ that has a so called Laplace distribution under the probability measure \mathbf{P}, which is to say that X has probability density function $f_{X}(x)=\frac{1}{2} \mathrm{e}^{-|x|}$ for $x \in \mathbb{R}$. Find a new probability measure \mathbf{Q} on the sample space and σ-field (Ω, \mathcal{F}) such that X is standard normal $\mathrm{N}(0,1)$-distributed under \mathbf{Q}. (5 points)

Task 6. Consider a so called fully implicit numerical scheme given by
$Y_{0}=1 \quad$ and $\quad Y_{k}=Y_{k-1}-Y_{k}\left(t_{k}-t_{k-1}\right)+Y_{k}\left(B\left(t_{k}\right)-B\left(t_{k-1}\right)\right) \quad$ for $k=\{1, \ldots, n\}$.
As the grid $0=t_{0}<t_{1}<\ldots<t_{n}=T$ becomes finer and finer, what SDE will the above scheme become an approximative numerical solution of?

TMS165/MSA350 Stochastic Calculus Part I

Solutions to written exam Wednesday 11 April 2012

Task 1. Writing $F(x, t)=f\left(x^{2}, t\right)$ we have $d f\left(B(t)^{2}, t\right)=d F(B(t), t)=F_{x}^{\prime}(B(t), t)$ $d B(t)+\frac{1}{2} F_{x x}^{\prime \prime}(B(t), t) d t+F_{t}^{\prime}(B(t), t) d t$, so that $f\left(B(t)^{2}, t\right)$ is a martingale iff. $\frac{1}{2} F_{x x}^{\prime \prime}(x, t)$ $+F_{t}^{\prime}(x, t)=2 x^{2} f_{x x}^{\prime \prime}\left(x^{2}, t\right)+f_{x}^{\prime}\left(x^{2}, t\right)+f_{t}^{\prime}\left(x^{2}, t\right)=0$.

Task 2. Since $d[\sin (B(t)), \cos (B(t))]=d(\sin (B(t))) d(\cos (B(t)))=(\cos (B(t)) d B(t)-$ $\left.\frac{1}{2} \sin (B(t)) d t\right)\left(-\sin (B(t)) d B(t)-\frac{1}{2} \cos (B(t)) d t\right)=-\cos (B(t)) \sin (B(t)) d t$ we get $[\sin (B(t)), \cos (B(t))]=-\int_{0}^{t} \sin (B(s)) \cos (B(s)) d s$.

Task 3. As $\mathcal{E}(X(t))=\mathrm{e}^{X(t)-X(0)-\frac{1}{2}[X(t), X(t)]}$ [so that in particular $\left.\mathcal{E}(X(0))=1\right]$ and $\mathcal{L}(U(t))=\log (U(t) / U(0))+\frac{1}{2} \int_{0}^{t} U(s)^{-2} d[U(s), U(s)]$, we get $\mathcal{L}(\mathcal{E}(X(t)))=X(t)-$ $X(0)-\frac{1}{2}[X(t), X(t)]+\frac{1}{2} \int_{0}^{t} \mathcal{E}(X(s))^{-2}(\mathcal{E}(X(s)) d X(s))^{2}=X(t)-X(0)$, so the answer is yes if $X(0)=0$ but no otherwise.

Task 4. As $W(t)$ clearly is a zero-mean Gaussian process it is enough to check that it has the same covariance function $\mathbf{E}\{B(s), B(t)\}=\min (s, t)$ as has Brownian motion (cf. Theorem 3.3 in Klebaner's book). However, $\mathbf{E}\{W(s), W(t)\}=\mathbf{E}\{s B(1 / s), t B(1 / t)\}=$ st $\min (1 / s, 1 / t)=\min (s, t)$.

Task 5. $\mathbf{Q}(A)=\int_{A} 2 \mathrm{e}^{|X|} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-X^{2} / 2} d \mathbf{P}$ for $A \in \mathcal{F}$.
Task 6. The scheme gives an approximate solution to the $\operatorname{SDE} d Y(t)=-Y(t) d t+$ $Y(t) d B(t)+d Y(t) d B(t)=-Y(t) d t+Y(t) d B(t)+(-Y(t) d t+Y(t) d B(t)+d Y(t) d B(t))$ $d B(t)=Y(t) d B(t)$ for $t \in[0, T]$ with initial value $Y(0)=1$, that is to say, an approximation of the stochastic exponential of B.

