
TMS165/MSA350 Stochastic Calculus Part I

Written Exam Friday 18 January 2013 8.30 am–12.30 am

Teacher and Jour: Patrik Albin, telephone 070 6945709.

Aids: None.

Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points

(70%) for grade VG and 24 points (80%) for grade 5, respectively.

Motivations: All answers/solutions must be motivated.

Good Luck!

Througout this exam B = {B(t)}t≥0 denotes a Brownian motion.

Task 1. Solve the SDE

dX(t) =
1

2
X(t)(ln(X(t)))2 dt + X(t) ln(X(t)) dB(t) for t > 0, X(0) = e.

(5 points)

Task 2. Find the quadratic covariation process [exp{eB(t)}, B(t)3](t) for t ≥ 0.

(5 points)

Task 3. Consider an Ornstein-Uhlembeck {X(t)}t≥0 given by the SDE

dX(t) = −X(t) dt + dB(t) for t > 0, X(0) = 0.

For which two times continuously differentiable functions f : R → R is {f(X(t))}t≥0 a

time-homogeneous diffusion process with zero drift coefficient? (5 points)

Task 4. We have observed a diffusion process {X(t)}t∈[0,10] which is either Brownian

motion X(t) = B(t) or an Ornstein-Uhlenbeck process as specified in Task 3 above.

How can we used the observed data {X(t)}t∈[0,10] to determine which of the two models

(/origins) for X(t) is the correct one? (5 points)

Task 5. Solve the PDE

1

2
σ2x2 ∂2f(x, t)

∂x2
+µx

∂f(x, t)

∂x
+

∂f(x, t)

∂t
= rf(x, t) for (x, t)∈R×[0, T ], f(x, T ) = x2,

where σ2, µ, r, T > 0 are constants. (5 points)

Task 6. Describe the Euler method for numerical solution of an SDE. Under what

conditions on the coefficients of the SDE can the Euler method be expected to converge?

Give a sketch of the proof of that convergence. (5 points)
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TMS165/MSA350 Stochastic Calculus Part I

Solutions to Written Exam Friday 18 January 2013

Task 1. Taking Y (t) = ln(X(t)) Itô’s formula shows that

dY (t) =
dX(t)

X(t)
−

d[X, X](t)

2 X(t)2

=
1

2
(ln(X(t)))2 dt + ln(X(t)) dB(t) −

1

2
(ln(X(t)))2 dt

= Y (t) dB(t)

with Y (0) = 1, so that Y (t) = eB(t)−t/2 and X(t) = exp{eB(t)−t/2}.

Task 2. As d(exp{eB(t)}) = exp{eB(t)}(eB(t) dB(t)+ 1
2(eB(t)+e2B(t)) dt) and d(B(t)3) =

3 B(t)2 dB(t) + 3B(t) dt, we have

d([exp{eB(t)}, B(t)3](t)) = d(exp{eB(t)}) d(B(t)3) = 3B(t)2 eB(t) exp{eB(t)} dt,

so that [exp{eB(t)}, B(t)3](t) =
∫ t
0 3 B(s)2 eB(s) exp{eB(s)} ds for t≥ 0.

Task 3. The diffusion process

f(X(t)) = f(X(0)) +

∫ t

0
f ′(X(s)) dX(s) +

1

2

∫ t

0
f ′′(X(s)) d[X, X](s)

= f(0) +

∫ t

0
f ′(X(s)) dB(s) +

∫ t

0

(1

2
f ′′(X(s))−f ′(X(s))X(s)

)

ds

has zero drift if 1
2f ′′(x) − f ′(x)x = 0, which gives ln(f ′(x)) = x2 + C1 so that f ′(x) =

C2 ex2

and f(x) = C3

∫

ex2

dx + C4 for x ≥ 0, where C1, C4 ∈ R and C2, C3 > 0 are

constants.

Task 4. According to Example 10.5 and Equation 10.53 in Klebaner’s book we calculate

the likelihood

Λ(X) = exp

{

−

∫ 10

0
X(t) dX(t) −

1

2

∫ 10

0
X(t)2 dt

}

.

If this likelihood is (significantly) bigger that 1 we conclude that X(t) is an Ornrstein-

Uhlenbeck process while if the likelihood is (significantly) smaller that 1 we conclude

that X(t) is a Brownian motion.

Task 5. See Example 6.5 in Klebaner’s book.

Task 6. See Lecture 13 in Stig’s lecture notes.
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