TMS165/MSA350 Stochastic Calculus Part I

Written Exam Wednesday 3 April 2013 8.30-12.30 am

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: None.
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4,21 points (70%) for grade VG and 24 points (80%) for grade 5 , respectively.

Motivations: All answers/solutions must be motivated.
Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion while $\mathcal{F}^{B}=\left\{\mathcal{F}_{t}^{B}\right\}_{t \geq 0}$ denotes the filtration generated by B.

Task 1. Explain why the Riemann-Stieltjes integral $\int f d g$ is not well-defined when $[f, g] \neq 0 . \quad(5$ points $)$

Task 2. Show that the stochastic process $\left\{B(t)^{4}-6 t B(t)^{2}+3 t^{2}\right\}_{t \geq 0}$ is a martingale with respect to \mathcal{F}^{B}. (5 points)

Task 3. Show that the Itô integral process $\left\{\int_{0}^{t} X d B\right\}_{t \in[0, T]}$ of a simple adapted (to \mathcal{F}^{B}) process $\{X(t)\}_{t \in[0, T]}$ is a martingale with respect to \mathcal{F}^{B}. (5 points)

Task 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a two times continuously differentiable and strictly increasing function. Find a diffusion type SDE

$$
d X(t)=\mu(X(t)) d t+\sigma(X(t)) d B(t) \quad \text { for } t>0, \quad X(0)=f(0)
$$

that has solution $X(t)=f(B(t))$. (5 points)
Task 5. Let $\{X(t)\}_{t \geq 0}$ be a time homogeneous diffusion process that has a stationary distribution and is started according to that stationary distribution at time $t=0$. Prove that X is a stationary process, which is to say that

$$
\mathbf{P}\left\{X\left(t_{1}+h\right) \leq x_{1}, \ldots, X\left(t_{n}+h\right) \leq x_{n}\right\}=\mathbf{P}\left\{X\left(t_{1}\right) \leq x_{1}, \ldots, X\left(t_{n}\right) \leq x_{n}\right\}
$$

for $0<t_{1}<\ldots<t_{n}, h \geq 0$ and $x_{1}, \ldots, x_{n} \in \mathbb{R}$. (5 points)

Task 6. Given constants $\mu \in \mathbb{R}$ and $\sigma>0$, find the solution $f(x, t)$ to the PDE
$\mu \frac{\partial f(x, t)}{\partial x}+\frac{\sigma^{2}}{2} \frac{\partial^{2} f(x, t)}{\partial x^{2}}+\frac{\partial f(x, t)}{\partial t}=0 \quad$ for $t \in[0, T), \quad f(x, T)=x^{2}$.

TMS165/MSA350 Stochastic Calculus Part I

Solutions to Written Exam Wednesday 3 April 2013

Task 1. When $\int_{0}^{T} f d g$ is well-defined the limits $\lim _{\max _{1 \leq i \leq n} t_{i}-t_{i-1} \downarrow 0} \sum_{i=1}^{n} f\left(t_{i}\right)\left(g\left(t_{i}\right)-\right.$ $\left.g\left(t_{i-1}\right)\right)$ and $\lim _{\max _{1 \leq i \leq n} t_{i}-t_{i-1} \downarrow 0} \sum_{i=1}^{n} f\left(t_{i-1}\right)\left(g\left(t_{i}\right)-g\left(t_{i-1}\right)\right)$ must coincide for grids $0=t_{0}<t_{1}<\ldots<t_{n-1}<t_{n}=T$ that become infinitely fine in the limit. However, when $[f, g](T) \neq 0$ these limits do not coincide as their difference is precisely $[f, g](T)$.

Task 2. By Itô's formula we have $d\left(B(t)^{4}-6 t B(t)^{2}+3 t^{2}\right)=4 B(t)^{3} d B(t)+6 B(t)^{2} d t$ $-12 t B(t) d B(t)-6 t d t-6 B(t)^{2} d t+6 t d t=4 B(t)^{3} d B(t)-12 t B(t) d B(t)$, so that $B(t)^{4}-6 t B(t)^{2}+3 t^{2}=\int_{0}^{t}\left(4 B(s)^{3}-12 s B(s)\right) d B(s)$, which in turn is a martingale as it is an Itô integral of a mean-square integrable process.

Task 3. See the solution to Exercise 4 at
http://www.math.chalmers.se/Stat/Grundutb/CTH/tms165/1213/Exercises/exercise3.pdf
Task 4. By Itô's formula we have $d\left(f(B(t))=f^{\prime}(B(t)) d B(t)+\frac{1}{2} f^{\prime \prime}(B(t)) d t\right.$, so that we must have $\mu(x)=\frac{1}{2} f^{\prime \prime}\left(f^{-1}(x)\right)$ and $\sigma(x)=f^{\prime}\left(f^{-1}(x)\right)$.

Task 5. Writing $\pi(x)$ for the stationary probability density function and supposing that $X(0)$ has that density function, we have with obvious notation using Eq. 6.67 in Klebaner's book (see also Eq. 3.4 in Klebaner's book)

$$
\begin{aligned}
& \mathbf{P}\left\{X\left(t_{1}+h\right) \leq x_{1}, \ldots, X\left(t_{n}+h\right) \leq x_{n}\right\} \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{x_{1}} \ldots \int_{-\infty}^{x_{n}} \pi(x) p\left(t_{1}+h, x, y_{1}\right) p\left(t_{2}-t_{1}, y_{1}, y_{2}\right) \ldots p\left(t_{n}-t_{n-1}, y_{n-1}, y_{n}\right) d y_{n} \ldots d y_{1} d x \\
= & \int_{-\infty}^{x_{1}} \ldots \int_{-\infty}^{x_{n}} \pi\left(y_{1}\right) p\left(t_{2}-t_{1}, y_{1}, y_{2}\right) \ldots p\left(t_{n}-t_{n-1}, y_{n-1}, y_{n}\right) d y_{n} \ldots d y_{1} .
\end{aligned}
$$

As the right-hand side of this expression does not depend on $h \geq 0$ we are done.
Task 6. The corresponding SDE is $d X(t)=\mu d t+\sigma d B(t)$ with solution $X(t)=$ $\mu t+\sigma B(t)$, so that by the Feynman-Kac formula $f(x, t)=\mathbf{E}\left\{X(T)^{2} \mid X(t)=x\right\}=$ $\mathbf{E}\left\{(\mu T+\sigma(B(T)-B(t))+\sigma B(t))^{2} \mid \sigma B(t)=x-\mu t\right\}=\mathbf{E}\left\{(\mu(T-t)+\sigma(B(T)-B(t))+x)^{2}\right\}$ $=(\mu(T-t)+x)^{2}+\sigma^{2}(T-t)$. (Of course, it is easy to check that this function f satisfies the PDE.)

