TMS 165/MSA350 Stochastic Calculus Part I Fall 2013

Exercise session 6

Exercise 1. Exercise 1 in Stig Larsson’s lecture notes “Numerical Methods for Stochas-

tic ODEs”.

Solution. The task is to prove the estimate (8) given the conditions (1)-(5) and with
Gronwall’s lemma and Doob’s inequality at our disposal. To land the proof we will
assume that X € Er, so that the It integral involved is a square-integrable martingale:
Without this additional assumption (which can be waived at the cost of involving the
much deeper Burkholder-Davis-Gundy inequality for local martingales in Section 7.7 of
Klebaner’s book) we neither know that the It6 integral involved is a martingale or that
the isometry formula can be used, which is not what is really meant:) Now the proof is

just a version of that of Theorem 3, as we have
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Exercise 2. Exercise 2 in Larsson’s lecture notes.

Solution. Consider the operator Er>Y — G(Y) € Er given by
t t
G(Y)(t) = Xg—l—/ w(Y(r),r)dr —l—/ o(Y(r),r)dB(r) for te€][0,T].
0 0

Note that Exercise 1 ensures that G maps Ep on Ep. Further, note that Fp is a Banach



space when equipped with the norm || X|| = sup,cpo )/ E{X(t)?}. By a version of the

argument employed in the solution of Exercise 1 we have
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Hence G is a contraction so that the fixed point theorem for contarctions on Banach

spaces ensures that there exists a unique X € Er such that G(X) = X. This in turn is

of course a unique strong solution to the SDE (1).

Exercise 3. Exercise 3 in Larsson’s lecture notes.

Solution. By a version of the argument employed in the solution of Exercise 1 we have
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Exercise 4. Given some constants u, o € R, consider the SDE

dX(t) = pdt + o X () dB(t) for te(0,T],  X(0)=Xo.

(a) Show that the unique strong solution to this SDE is given by



t
X(t) = o0 B(t)—0?t/2 <X0 + M/ e~ oB(s)+o%s/2 ds) for t€[0,T].
0

(b) Solve the SDE numerically for y=0c=1, T =10 and X, =0 by the Euler method.

Plot a sample path of the numerical solution and compare with the analytic solution.

Solution. (a) According to Theorem 5.4 in Klebaner’s book the SDE has a unique

strong solution. By application of It6’s formula Theorem 4.17 in Klebaner’s book with

t
fly,2)=yz, Y(t)= QBMH—-0/2 4 Z(t) = Xo + M/ o~ 0B(t)+07s/2 4
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(cf. Example 4.25 in Klebaner’s book) we further see that Y (¢)Z(t) is the solution as
dY(t)Z(t)) =Y (t)dZ(t)+ Z(t)dY (t) + dY (t)dZ(t)
=pdt+Y(t)Z(t)odB(t) + (ndt) (c dB(t))

=pdt+Y(t)Z(t) o dB(t).

(b) n2si= A ear [steps, mu, signa, T, X0, dB, Xnuneric, B, IntB, Xanal ytilc steps=10000; nu=1; signa=1;
T=10; X0=0; dB=Tabl e[Random{Nor nal Di stri butiorfO, Sqrt[T/steps]]], {i, 1, steps}];

nzs)= For [i =1; Xnumeric={X0}, i <steps, i++,
AppendTo[ Xnuneri c, Xnunmeric[[i]] +nuxT/steps+sigmaxXnuneric[[i]]*=dB[[i]]1]1];
Li st Pl ot [Xnureri c, Pl otJoi neds True, Pl ot Range- {-0.51, 20. 1},
Ti cks- {{{1000, ""}, {2000, "2"}, {3000, ""}, {4000, "4"}, {5000, ""},
{6000, "6"}, {7000, ""}, {8000, "8"}, {9000, ""}, {10000, "10"}}, Autonatic}]

out[3s)= 10
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nizel= For [i =1; Xanal ytic={X0}; B={0}; IntB={0}, i ssteps, i++ AppendTo[B, B[[i]] +dB[[i]]];
AppendTo[IntB, IntB{[i]] +Exp[-sigmaxB[[i]] +signa”2«i = (T/steps) /2] »T/steps];
AppendTo[ Xanal ytic, Exp[sigmaxB[[i +1]] -sigma”2x (i +1) = (T/steps) /2] = (XO+IntB[[i +1]])11];
Li st Pl ot [Xanal ytic, Pl otJoi ned» True, P ot Range- {-0.51, 20. 1},
Ti cks- {{{1000, ""}, {2000, "2"}, {3000, ""}, {4000, "4"}, {5000, ""},
{6000, "6"}, {7000, ""}, {8000, "8"}, {9000, ""}, {10000, "10"}}, Autonatic}]

outzsj= 10




Exercise 5. Exercise 4 in Stig Larsson’s lecture notes.

Solution. In order to prove (37) we note that the first equation in the proof of The-
orem 6 holds with T replaced by any s € [t,T]. As the expectation of the martingale
on the right-hand side of that equation is zero it follows that E{u(Z(s;z,t),s)} =
E{u(Z(t;x,t),t)} for s € [t,T]. Recalling that u(Z(t;z,t),t) = u(x,t) since Z(t;x,1t)
= x is the initial value of the SDE that is posted just before the proof, we arrive at

E{u(Z(s;x,t),s)} = u(x,t) for s € [t,T] [which is the version of (37) we prove].

Exercise 6. Exercise 5 in Larsson’s lecture notes.

Solution. This follows in the following elementary fashion from integration by parts
together with the fact that the functions ¢ and % involved have compact support in
R x (0,7) [that is, they are zero outside a closed and bounded set in R x (0,T)]:
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Note that it is enough to require that one of the functions ¢ and 1 have compact support

for the proof above to work: This will be important in the next exercise.

Exercise 7. Exercise 6 in Larsson’s lecture notes.



Solution. Using (39) and (40) we shall prove that u(z,t) given by (38) solves (34).
[Note that Theorem 6 ensures that solutions to (34) are unique when they exist.] First
note that (40) ensures that the terminal value u(x,T') is g(x) as required. In the language
of Exercise 5 in Larsson’s lecture notes we shall prove that L*u(z,t) =0 for u(z,t) given
by (38). To that end we note that Exercise 5 in Larsson’s lecture notes shows that for

any function ¢(z,t) that has compact support and satisfies Lo(x,t) =0 we have
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Assuming that the space of functions ¢(z,t) with compact support that satisfy Lo(x,t)

=0 is rich enough, this proves that L*u(z,t) =0.



