TMS 165/MSA350 Stochastic Calculus Part I Fall 2013 Home exercises for Chapter 3 in Klebaner's book

Througout this set of exercises $B = \{B(t)\}_{t \ge 0}$ denotes Brownian motion.

Task 1. Show that the stochastic process $\{B(t)^4 - 6tB(t)^2 + 3t^2\}_{t\geq 0}$ is a martingal with respect to the filtration $\{\mathcal{F}_t^B\}_{t\geq 0}$ generated by B.

Task 2. For an $\varepsilon > 0$, consider the differential ratio process $\Delta_{\varepsilon} = {\{\Delta_{\varepsilon}(t)\}_{t \ge 0}}$ given by

$$\Delta_{\varepsilon}(t) = \frac{B(t+\varepsilon) - B(t)}{\varepsilon} \quad \text{for } t \ge 0.$$

Show that the covariance function

$$r_{\varepsilon}(t) = \mathbf{Cov}\{\Delta_{\varepsilon}(s), \Delta_{\varepsilon}(s+t)\}\$$

of Δ_{ε} is a triangle like function that depends on the difference t between $s \geq 0$ and $s+t \geq 0$ only. Show that $r_{\varepsilon}(t) \to \delta(t)$ (Dirac's δ -function) as $\varepsilon \downarrow 0$. Simulate a sample path of $\{\Delta_{\varepsilon}(t)\}_{t\in[0,1]}$ for a really small $\varepsilon > 0$ and plot it graphically. Discuss the claim that the (non-existing in the usual sense) derivative process $\{B'(t)\}_{t\geq 0}$ of B is white noise.

Task 3. Nobert Wiener (1894-1964) defined the stochastic integral process $\{\int_0^t g \, dB\}_{t\geq 0}$ with respect to B for continuously differentiable functions $g:[0,\infty) \to \mathbb{R}$ as

$$\int_0^t g \, dB = g(t)B(t) - \int_0^t B \, dg = g(t)B(t) - \int_0^t B(r)g'(r) \, dr \quad \text{for } t \ge 0.$$

[Of course, the motivation for this definition comes from the integration by parts formula Equation 1.20 in Klebaner's book.] Show by means of direct calculation (not using Itô's formula) that $\{\int_0^t g \, dB\}_{t\geq 0}$ defined in this way is a martingale.

Task 4. As *B* has strictly positive quadratic variation and is continuous, *B* must have infinite variation V_B by Theorem 1.10 in Klebaner's book. Another way to understand that $V_B(t) = \infty$ for t > 0 is the following: For increasingly fine partitions $0 = t_0 < t_1 < \ldots < t_n = t$ of the interval [0, t], compute the limits of

$$\mathbf{E}\left\{\sum_{i=1}^{n}|B(t_{i})-B(t_{i-1})|\right\} \quad \text{and} \quad \mathbf{Var}\left\{\sum_{i=1}^{n}|B(t_{i})-B(t_{i-1})|\right\}$$

as $\max_{1 \le i \le n} t_i - t_{i-1} \downarrow 0$. Explain how to conclude that $V_B(t) = \infty$.