
TMS165/MSA350 Stochastic Calculus Part I Fall 2013

Lecture 14 on Applications

In this lecture we demonstrate how statistical methods such as the maximum likelihood

method and likelihood ratio estimation can be applied to the Ornstein-Uhlenbeck (OU)

process.

1. Elements of diffusion theory

Diffusion processes and SDE

A time homogeneous diffusion process is the solution X = {X(t)}t≥0 to an SDE of the

form

dX(t) = µ(X(t)) dt + σ(X(t)) dB(t) for t≥ 0, (1)

where the drift coefficient µ : R → R and the diffusion coefficient σ : R → R are

“sufficiently nice” functions. Here B = {B(t)}t≥0 denotes a Brownian motion as usual.

By definition, the solution X to (1) satisfies

X(t) = X(0) +

∫ t

0
µ(X(r)) dr +

∫ t

0
σ(X(r)) dB(r) for t ≥ 0. (2)

Markov property

The solution X to the SDE (1) is a Markov process, which is to say that

P
{

X(t) ∈ ·
∣

∣FX
s

}

= P{X(t) ∈ · |X(s)} for 0≤ s≤ t.

Here FX
s = σ{X(r) : r≤s} for s≥ 0 is the filtration generated by the process X itself.

While a detailed rigorous proof of the Markov property is extremly complicated, the

Markov property is easy to understand from a more heursitic point of view: Using the

representation (2) for both X(t) and X(s) we get

X(t) = X(s) +

∫ t

s
µ(X(r)) dr +

∫ t

s
σ(X(r)) dB(r)

= X(s) + lim
n

∑

i=1

µ(X(ti−1)) (ti − ti−1) + lim
n

∑

i=1

σ(X(ti−1)) (B(ti) − B(ti−1)),

where s = t0 < t1 < . . . < tn = t is a partion of the interval [s, t] that becomes finer

and finer in the limit. From this we see the that the only thing from the past FX
s that

affects the future value X(t) is the value X(s) = X(t0) of X at time s = t0.
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Transition densities

The transition density function

p(t, x, y) =
d

dy
P{X(t+s)≤ y |X(s) = x} for t > 0

of the diffusion process X given by (1) or (2) satisfies the Kolmogorov backward PDE

∂

∂t
p(t, x, y) =

σ(x)2

2

∂2

∂x2
p(t, x, y) + µ(x)

∂

∂x
p(t, x, y).

Conversely, under general conditions, a solution to this PDE is the transition density

function of the diffusion process given by (1) or (2) if it is a probability density function

as a function of y for each choice of x and t > 0, that is,

p(t, x, y)≥ 0 and

∫

R

p(t, x, y) dy = 1,

and in addition satisfies p(t, x, y)→ 0 as t ↓ 0 for x 6= y.

In general it is not an easy task or even possible to find an explicit expression for

the transition density function. Argubly, the most common systematic way to try to

solve the Kolmogorov backward PDE is to consider the Laplace transform

p̂(λ, x, y) =

∫ ∞

0
e−λt p(t, x, y) dt for λ > 0,

which must satisfy the ODE

−λ p̂(λ, x, y) =
σ(x)2

2

∂2

∂x2
p̂(λ, x, y) + µ(x)

∂

∂x
p̂(λ, x, y)

(for x 6= y), as
∫ ∞

0
e−λt ∂

∂t
p(t, x, y) dt = −λ

∫ ∞

0
e−λt p(t, x, y) dt

(for x 6= y) when p(0, x, y) = 0. The conditions that p is a density function translates to

∫

R

p̂(λ, x, y) dy =

∫

R

∫ ∞

0
e−λt p(t, x, y) dtdy =

∫ ∞

0
e−λt

∫

R

p(t, x, y) dydt =

∫ ∞

0
e−λt dt =

1

λ
.

As the ODE for p̂(λ, x, y) usually has a unique solution that integrates to 1/λ, in the

above fashion, this determines the Laplace transform p̂(λ, x, y) of p(t, x, y), after which

p(t, x, y) is found by inverse Laplace tranformation.

Although the above indicated way to find transition densities for diffusions does

indeed work for many important equations, the details of the solution are in general too

difficult to be attempted on undergraduate level, and it is usually more rewarding to

search the literature (web) for solutions than to try to derive them oneself.
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Stationary distribution

A stationary density function for X is a probability density function π that satisfies

π(y) =

∫

R

d

dy
P{X(t+s)≤ y |X(s) = x}π(x) dx =

∫

R

p(t, x, y)π(x) dx for t > 0.

By the Chapman-Kolmogorov equation below Theorem 5.6 in Klebaner’s book, this

means that if the process has the stationary density function (distribution) at a certain

time, then it has the stationary density function (distribution) at all later times. It can

be shown (see Task 2 of Home exercise session 5) that if X is started according to the

stationary distribution at time t = 0, then X is a stationary process. Also, regardless

of how X is started, X will converge (in a way we select not to specify) to a stationary

process with the stationary marginal distribution as t→∞.

As the transition density satisfies the Kolmogorov forward PDE

∂

∂t
p(t, x, y) =

∂2

∂y2

(

σ(y)2

2
p(t, x, y)

)

+
∂

∂y

(

µ(y) p(t, x, y)

)

,

we see from the above integral equation that

−
(

∂2

∂y2

σ(y)2

2
+

∂

∂y
µ(y)

)

π(y) =

(

∂

∂t
− ∂2

∂y2

σ(y)2

2
− ∂

∂y
µ(y)

)

π(y)

=

∫

R

(

∂

∂t
− ∂2

∂y2

σ(y)2

2
− ∂

∂y
µ(y)

)

p(t, x, y)π(x) dx

= 0.

If it exists, then the stationary density function is given by

π(y) =
C

σ(y)2
exp

{
∫ y

y0

2 µ(z)

σ(z)2
dz

}

.

Here C > 0 is a normalizing constant selected to make π a probability density function,

that is,
∫

R
π(y) dy = 1, while y0 ∈ R is any constant. The existence of the stationary

density function is the same thing as that this normalizing procedure is possible to carry

out. Note that it is easy to see that π satisfies the ODE (cf. above)
(

∂2

∂y2

σ(y)2

2
+

∂

∂y
µ(y)

)

π(y).

Finite dimensional distributions

The joint probability density function of (X(t0), X(t1), . . . , X(tn)) for 0 = t0 < t1 <

. . . < tn is given by

fX(t0),X(t1),...,X(tn)(x0, x1, . . . , xn) = π(x0)
n

∏

i=1

p(ti−ti−1, xi−1, xi)
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when the process is started with the stationary density function π (provided that it

exists) at time 0, while

fX(t1),...,X(tn)(x1, . . . , xn) =
n

∏

i=1

p(ti−ti−1, xi−1, xi)

when the process is started at a fixed value X(0) = x0.

Euler method

We may simulate a weak solution to the SDE at a time grid 0 = t0 < t1 < . . . < tn = T

by means of the Euler method, as

X(ti) ≈ X(ti−1) + µ(X(ti−1)) (ti− ti−1) + σ(X(ti−1)) ξi for i = 1, . . . , n,

where {ξi}n
i=1 are independent random variables such that ξi is zero-mean normal dis-

tributed with standarddeviation
√

ti− ti−1, and where X(0) is a random variable that

is indepedent of {ξi}n
i=1 and has the stationary distribution if X is started according to

the stationary distribution, while X(0) = x0 if X is started at a fixed value x0.

Likelihood ratios

If the diffusion process X satisfies the equation

dX(t) = µ1(X(t)) dt + σ(X(t)) dB(t)

for a P1-Brownian motion B and

dX(t) = µ2(X(t)) dt + σ(X(t)) dW (t)

for a P2-Brownian motion W , where P1 and P2 are two different probability measures,

then the likelihood ratio between P2 and P1 based on an observation {X(t)}t∈[0,T ] of

the process X in the time interval [0, T ] is given by

dP2

dP1
= exp

{
∫ T

0

µ2(X(t))−µ1(X(t))

σ(X(t))2
dX(t) − 1

2

∫ T

0

µ2(X(t))2−µ1(X(t))2

σ(X(t))2
dt

}

.

This likelihood ratio can be used to judge which is the most likely of the above two

SDE-models for X based on the observations: If dP2/dP1 is bigger than 1 then the

model with the drift µ2 is the most likely, while a value of dP2/dP1 that is smaller than

1 indicates that the drift µ1 is the most likely.

The likelihood ratio can also be used to estimate parameters of a parametric SDE,

as we will see later.
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2. The OU process

An OU process is the solution X to the SDE

dX(t) = −µX(t) dt + σ dB(t),

where µ > 0 and σ > 0 are parameters. In other words, the drift is µ(x) = −µx and the

difffusion coefficient σ(x) = σ.

The OU process has stationary distribution

π(y) =
1

σ2
exp

{

−
∫ y

0

2µz

σ2
dz

}/(
∫

R

1

σ2
exp

{

−
∫ y

0

2µz

σ2
dz

}

dy

)

=

√
µ√

πσ
exp

{

−µy2

σ2

}

,

that is, a zero-mean normal distribution with standarddeviation σ/
√

2 µ.

As we have shown in Exercise Session 5, the OU process has transition density

p(t, x, y) =

√
µ

√
π σ

√
1− e−2µt

exp

{

− (y− e−µtx)2

σ2 (1− e−2µt)/µ

}

,

that is, a normal distribution with mean e−µtx and standarddeviation σ
√

1−e−2µt/
√

2µ.

It is also a routine matter to differentiate to check that this function p satisfies the

Kolmogorov backward PDE.

If X is an OU process

dX(t) = −µ1 X(t) dt + σ dB(t)

for a Pµ1
-Brownian motion B, and an OU process

dX(t) = −µ2 X(t) dt + σ dW (t)

for a Pµ2
-Brownian motion W , then the corresponding likelihood ratio is given by

dPµ2

dPµ1

= exp

{

−µ2−µ1

σ2

∫ T

0
X(t) dX(t) − µ2

2−µ2
1

2 σ2

∫ T

0
X(t)2 dt

}

.

In particular, we can find which is the most likely of the models

dX(t) = dB(t)

and

dX(t) = −X(t) dt + dW (t)

by computing the likelihood ratio for µ1 = 0, µ2 = 1 and σ = 1

dP1

dP0
= exp

{

−
∫ T

0
X(t) dX(t) − 1

2

∫ T

0
X(t)2 dt

}

,
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and then check whether dP1/dP0 > 1, indicating that µ = 1 is the most appropriate

model, or dP1/dP0 < 1, indicating that µ = 0 is the most appropriate model.

We can also estimate the parameter µ for the equation

dX(t) = −µX(t) dt + dW (t)

by means of maximizing the likelihood

dPµ

dP0
= exp

{

−µ

∫ T

0
X(t) dX(t) − µ2

2

∫ T

0
X(t)2 dt

}

,

which by differentiation gives the estimate

µ = −
∫ T

0
X(t) dX(t)

/(
∫ T

0
X(t)2 dt

)

.

3. Application to the OU process

We used the Euler method to simulate an OU process {X(t)}t∈[0,10] started according

to the stationary distribution, and an OU process {Y (t)}t∈[0,10] started at zero. In

both cases the drift was µ(x) = −µ0x and the diffusion coefficient σ(x) = σ0, where

µ0 = σ0 = 1.

We use distance 1
100 between the time points of the simulation grid, so that 0 = t0 <

t1 < . . . < t1000 = 10, where ti− ti−1 = 1
100 for i = 1, . . . , 1000.

The simulations were carried out by means of the following Mathematica programs.

<<Statistics‘ContinuousDistributions‘;

dt=1/100; T=10; {mu0,sigma0}={1,1};
For[i=2; X={Random[NormalDistribution[0,sigma0/Sqrt[2*mu0]]]},

i<=T/dt, i++, AppendTo[X, X[[i-1]] - mu0*X[[i-1]]*dt

+ Random[NormalDistribution[0,sigma0*Sqrt[dt]]]]]

For[i=2; Y=0, i<=T/dt, i++, AppendTo[Y, Y[[i-1]] - mu0*Y[[i-1]]*dt

+ Random[NormalDistribution[0,sigma0*Sqrt[dt]]]]]

The results of the simulations are depicted in the following two figures
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YHtL OU process dYHtL=-YHtLdt+dBHtL, YH0L=0

The joint density functions of (X(t0), . . . , X(t1000)) and (Y (t0), . . . , Y (t1000)) are

given by

fX(t0),...,X(t1000)(x0, . . . , x1000)

= π(x0)
1000
∏

i=1

p(ti−ti−1, xi−1, xi)

=

√
µ√

πσ
exp

{

−µx2
0

σ2

} 1000
∏

i=1

√
µ

√
π σ

√

1− e−2µ/100
exp

{

− (xi− e−µ/100xi−1)
2

σ2 (1− e−2µ/100)/µ

}

and

fY (t1),...,Y (t1000)(y1, . . . , y1000) =
1000
∏

i=1

p(ti−ti−1, yi−1, yi)

=
1000
∏

i=1

√
µ

√
π σ

√

1− e−2µ/100
exp

{

− (yi− e−µ/100yi−1)
2

σ2 (1− e−2µ/100)/µ

}

,

respectively, where y0 = 0. Hence we may use the maximum likelihood method to

estimate µ and σ from our simulated data (pretending that they are unknown), by
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means of maximizing the likelihood

√
µ√

πσ
exp

{

−µX(t0)
2

σ2

} 1000
∏

i=1

√
µ

√
π σ

√

1− e−2µ/100
exp

{

−(X(ti)− e−µ/100X(ti−1))
2

σ2 (1− e−2µ/100)/µ

}

and
1000
∏

i=1

√
µ

√
π σ

√

1− e−2µ/100
exp

{

−(Y (ti)− e−µ/100Y (ti−1))
2

σ2 (1− e−2µ/100)/µ

}

,

respectively. These maximum likelihood estimates were carried out by means of the

following Mathematcia code (with the densities logged to not get numerical underflows).

fOUStationary[mu ,sigma ,x ]

:= Sqrt[mu]*Exp[-mu*x^2/sigma^2]/(Sqrt[Pi]*sigma);

pOU[mu ,sigma ,x ,y ,t ]

:= Exp[-(y-x*Exp[-mu*t])^2/(2*sigma^2*(1-Exp[-2*mu*t])/(2*mu))]

/(Sqrt[2*Pi]*sigma*Sqrt[1-Exp[-2*mu*t]]/Sqrt[2*mu]);

MLStationary[mu ,sigma ,dt ,Data ]

:= Log[fOUStationary[mu,sigma,Data[[1]]]]

+ Sum[Log[pOU[mu,sigma,Data[[i-1]],Data[[i]],dt]],

{i,2,Length[Data]}]
MLNonStationary[mu ,sigma ,dt ,Data ]

:= Sum[Log[pOU[mu,sigma,Data[[i-1]],Data[[i]],dt]],

{i,2,Length[Data]}]
NMaximize[MLStationary[mu,sigma,dt,X],mu>0,sigma>0, mu,sigma]

Out[]:= {890.45, {mu -> 1.01156, sigma -> 0.996303}}
NMaximize[MLNonStationary[mu,sigma,dt,Y],mu>0,sigma>0, mu,sigma]

Out[]:= {886.86, {mu -> 0.997098, sigma -> 1.00088}}

Note how well this fits with the correct values µ = 1 and σ = 1 for the parameters.

We calculate the likelihood ratios

dP1

dP0
(X) = exp

{

−
∫ 10

0
X(t) dX(t) − 1

2

∫ 10

0
X(t)2 dt

}

and
dP1

dP0
(Y ) = exp

{

−
∫ 10

0
Y (t) dY (t) − 1

2

∫ 10

0
Y (t)2 dt

}

,
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for our simulated processes, in order to fine whether

dX(t) = dB(t) or dX(t) = −X(t) dt + dW (t)

and

dY (t) = dB(t) or dY (t) = −Y (t) dt + dW (t),

respectively, are the most likely models for the data. As both ratios where significantly

larger than 1 (see the enclosed Mathematica code), the model with µ = 1 was the most

likely for both data sets.

OURatioTest[Data ]

:= Exp[Sum[-Data[[i-1]]*(Data[[i]]-Data[[i-1]]), {i,2,
Length[Data]}] - Sum[Data[[i]]^2*dt, {i,1,Length[Data]}]/2];

{OURatioTest[X], OURatioTest[Y]}
Out[]:= {10.1342, 10.5346}

We may estimate the parameter µ by means of maximizing the likelihood ratios

(dPµ/dP0)(X) and (dPµ/dP0)(Y ), respectively, which gives the µ estimates

µ = −
∫ 10

0
X(t) dX(t)

/(
∫ 10

0
X(t)2 dt

)

and µ = −
∫ 10

0
Y (t) dY (t)

/(
∫ 10

0
Y (t)2 dt

)

,

respectively. Both results were very close to the correct µ = 1, as the following Mathe-

matica code illustrates:

OURatioEst[Data ]

:= -Sum[Data[[i-1]]*(Data[[i]]-Data[[i-1]]), {i,2,Length[Data]}]
/Sum[Data[[i]]^2*dt, {i,1,Length[Data]}];

{OURatioEst[X], OURatioEst[Y]}
{0.954688, 0.991207}
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