
TMS 165/MSA350 Stochastic Calculus Part I Fall 2013

Selections from and additions to Klebaner’s book for Lec-

tures 1-11

Lecture 1, 3 September 2013

Chapter 1

Section 1.2

Equations 1.7-1.9 [we use (1.9) instead of (1.7) although (1.9) is more general].

The notation Vg(t) and the fact that this is a non-decreasing function.

Example 1.4.

Example 1.5.

Example 1.6.

Theorem 1.6.

Equation 1.13.

Theorem 1.10.

Equation 1.15.

Theorem 1.11.

Theorem 1.12.

Equation 1.17.

Section 1.3

Equations 1.18 and 1.19.

The “Particular Cases” on top of page 11.

The integration by parts formula on last row of page 12.
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Lecture 2, 4 September 2013

Chapter 2

Section 2.2

The definition of σ-field on the bottom of page 28.

The definition of probability on the middle of page 29.

The definition of random variable on the middle of page 30.

Example 2.8.

The definition of σ-field generated by random variable on the lower part of page 31.

Section 2.3

The first formula for E{X} of Section 2.3.

The definition of the Lebesgue integral on the lower part of page 33 (including Example

2.9 on page 31).

Equation 2.6.

The Properties 1-3 of expectation on page 35.

Section 2.4

Theorems 2.16-2.18.
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Lecture 3, 10 September 2013

Sections 2.1 and 2.2

The definition of a σ-field of events (repetition from Lecture 2).

Example 2.1.

The definition of a filtration.

Definition 2.1.

The definition of the σ-field generated by a random variable (repetition from Lecture

2).

The definition of the filtration generated by a stochastic process.

Section 2.7

Everything from “General Conditional Expectation” on page 44 up to and including

Theorem 2.24 on page 46.

Section 2.8

Definition 2.30.
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Lecture 4, 11 September 2013

Chapter 3

Section 3.1

The definition of Brownian motion (BM) on page 56 - note the unspecificness of the

value for B(0).

Example 3.2.

Equation 3.3.

Equation 3.4 without proof.

The notation Bx and Equation 3.5.

Definition 3.1 applied to BM.

Figure 3.1.

The definition of a Gaussian process on pagfe 59.

The fact that BM is a Gaussian process.

Definition 3.2.

Theorem 3.3.

Example 3.4.

Section 3.2

Everything from the subsection “Quadratic variation of BM”.

Everything from the subsection “Properties of Brownian paths”.

Section 3.3

Begin treatment of Theorem 3.7.
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Lecture 5, 17 September 2013

Section 3.3

Finish treatment of Theorem 3.7.

Section 3.4

Definition 3.8.

Theorem 3.9.

The definition of the transition probability at the bottom of page 67.

(Stopping times we will introduce later when they are needed.)

Sections 3.5-3.14

This material is not included in the course.

Chapter 4

Definition 2.11.

Definition 2.12.

Theorem. (Cauchy criterion) A sequence {Xn}
∞
n=1 of random variables converges

in probability to some random variable X if and only if

lim
m,n→∞

P
{

|Xn−Xm|> ε
}

= 0 for each ε > 0.

Definition 2.13.

Definition 2.14.

Theorem. (Cauchy criterion) A sequence {Xn}
∞
n=1 of random variables such that

E{|Xn|
r} < ∞ for all n converges in L

r to some random variable X if and only if

lim
m,n→∞

E
{

|Xn−Xm|r
}

= 0.
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Sections 4.1 - 4.2

Definition 4.2 - we use ST to denote the class of simple adapted processes {X(t)}t∈[0,T ].

The Itô integral process {
∫ t

0 X dB}t∈[0,T ] for X ∈ ST given by Equation 4.4.

Properties 1-4 of the Itô integral process for ST on the bottom of page 93 and the top

pf page 94. Further, we mention the martingale property (Theorem 4.7) as well as

continuity and adaptedness of the integral process for ST already here.

Definition. The class ET consists of all adapted processes {X(t)}t∈[0,T ] that satisfies

E

{
∫ T

0
X(t)2 dt

}

< ∞.

Theorem. For X ∈ET there exists a sequence {Xn}
∞
n=1 ⊆ ST such that

lim
n→∞

E

{
∫ T

0
(Xn(t)−X(t))2 dt

}

= 0.

Theorem and Definition. For X ∈ ET the Itô integral process {
∫ t

0 X dB}t∈[0,T ] is

well-defined and defined as a limit in the sense of convergence in L
2 of

∫ t

0 Xn dB as

n→∞ for each t∈ [0, T ], where {Xn}
∞
n=1 ⊆ ST are as in the previous theorem
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Lecture 6, 18 September 2013

Definition. The class ET consists of all adapted processes {X(t)}t∈[0,T ] that satisfies

E

{
∫ T

0
X(t)2 dt

}

< ∞.

Theorem. For X ∈ET there exists a sequence {Xn}
∞
n=1 ⊆ ST such that

lim
n→∞

E

{
∫ T

0
(Xn(t)−X(t))2 dt

}

= 0.

Proof when X is continuous1. Given X ∈ET and ε > 0 we need to prove that

E

{
∫ T

0
(Y (t)−X(t))2 dt

}

≤ ε for some Y ∈ ST .

To that end let

X(N)(t) =



















−N if X(t) < −N

X(t) if |X(t)| ≤ N

N if X(t) > N

.

Since X(N)(t)−X(t) → 0 as N →∞ with (X(N)(t)−X(t))2 ≤ X(t)2 we then have

E

{
∫ T

0

(

X(N)(t)−X(t)
)2

dt

}

→ 0 as N →∞

(by dominated convergence Theorem 2.18 in Klebaner’s book as X ∈ ET ). Using the

elementary inequality (x + y)2 ≤ 2 x2 + 2 y2 it follows that it is enough to prove that

given X ∈ET , ε > 0 and N ∈N we have

E

{
∫ T

0

(

Y (t)−X(N)(t)
)2

dt

}

≤ ε for some Y ∈ ST .

But as X(N) is uniformly continuous over [0, T ] (since X is uniformly continuous over

[0, T ]) we have that Z(n) ∈ ST given by

Z(n)(t) = I{0}(t)X
(N)(0) +

n−1
∑

i=0

I(ti,ti+1](t)X
(N)(ti) for t∈ [0, T ]

(where 0 = t0 < t1 < . . . < tn = T as usual) satisfies

sup
t∈[0,T ]

∣

∣Z(n)(t)−X(N)(t)
∣

∣ ≤ sup
s,t∈[0,T ], |s−t|≤ max

1≤i≤n

ti−ti−1

∣

∣X(N)(s)−X(N)(t)
∣

∣ → 0

1The proof for a general not necessarily continuous X is exceptionally difficult and is not really

required by us as we will later restrict ourselves to continuous X’es only
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as max1≤i≤n ti−ti−1 ↓ 0. In particular Z(n)(t)−X(N)(t) → 0 as max1≤i≤n ti−ti−1 ↓ 0

with (Z(n)(t)−X(N)(t))2 ≤ 4 N2, so that

E

{
∫ T

0

(

Z(n)(t)−X(N)(t)
)2

dt

}

→ 0 as max
1≤i≤n

ti−ti−1 ↓ 0

(by dominated convergence Theorem 2.18 in Klebaner’s book). Hence we may pick

Y = Z(n) for n large enough to make max1≤i≤n ti−ti−1 small enough.

Theorem and Definition. For X ∈ ET the Itô integral process {
∫ t

0 X dB}t∈[0,T ] is

well-defined and defined as a limit in the sense of convergence in L
2 of

∫ t

0 Xn dB as

n→∞ for each t∈ [0, T ], where {Xn}
∞
n=1 ⊆ ST are as in the previous theorem.

Proof. We have to show that {
∫ t

0 Xn dB}∞n=1 is a Cauchy sequence in L
2. But this

follows from the isometry property for the Itô integral for ST as

E

{(
∫ t

0
Xn dB −

∫ t

0
Xm dB

)2}

= E

{(
∫ t

0
(Xn−Xm) dB

)2}

= E

{
∫ t

0
(Xn(t)−Xm(t))2 dt

}

≤ 2E

{
∫ t

0
(Xn(t)−X(t))2 dt

}

+ 2E

{
∫ t

0
(X(t)−Xm(t))2 dt

}

→ 0 as m, n→∞.

We must also show that if also {X̂n}
∞
n=1 ⊆ ST satisfies

lim
n→∞

E

{
∫ T

0
(X̂n(t)−X(t))2 dt

}

= 0,

so that
∫ t

0 X̂n dB converges in L
2 to some limit

∮ t

0 X dB as n → ∞ (by what we have

just proven), then
∫ t

0 X dB =
∮ t

0 X dB. However, this follows from noting that

E

{(
∫ t

0
X dB −

∮ t

0
X dB

)2}

= lim
n→∞

E

{(
∫ t

0
Xn dB −

∫ t

0
X̂n dB

)2}

≤ 2 lim
n→∞

E

{
∫ T

0

(

Xn(t)−X(t)
)2

dt

}

+ 2 lim
n→∞

E

{
∫ T

0

(

X(t)− X̂n(t)
)2

dt

}

= 0.
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Properties of the Itô integral process for ET are exactly the same as those for ST

Definition. The class PT consists of all adapted processes {X(t)}t∈[0,T ] that satisfies

P

{
∫ T

0
X(t)2 dt < ∞

}

= 1.

Theorem. For X ∈ PT we have in the sense of convergence in probability

∫ T

0
(Xn(t)−X(t))2 dt → 0 as n→∞ for some sequence {Xn}

∞
n=1 ⊆ ET .

Theorem and Definition. For X ∈ PT the Itô integral process {
∫ t

0 X dB}t∈[0,T ] is

well-defined and defined as a limit in the sense of convergence in probability of
∫ t

0 Xn dB

as n→∞ for each t∈ [0, T ], where {Xn}
∞
n=1 ⊆ET are as in the previous theorem.

Theorem. A continuous and adapted process {X(t)}t∈[0,T ] belongs to PT and satisfies

sup
t∈[0,T ]

∣

∣

∣

∣

∫ t

0
X dB −

∫ t

0

n
∑

i=1

X(ti−1)I(ti−1,ti] dB

∣

∣

∣

∣

→ 0 in probability

for partitions 0 = t0 < t1 < . . . < tn = T of [0, T ] such that max1≤i≤n ti − ti−1 ↓ 0.

Properties of the Itô integral process for PT are the same as those for ET , except that

the properties zero-mean, martingale and isometry need no longer hold.

Example 4.2.

Example 4.5.

Theorem 4.9.

Section 4.3

Theorem 4.11.

Example 4.10.
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Lecture 7, 24 September 2013

Section 4.4

Theorem 4.13.

Example 4.12.

Example 4.13.

Section 4.5

Definition of an Itô process (not same thing as an Itô integral process) and of a stochastic

differential.

Example 4.14.

Example 4.15.

Equation 4.42.

Everything in the subsection “Integral with respect to Itô processes” (i.e., Equations

4.48-4.50).

Section 4.6

Theorem 4.16.

Example 4.20.

Example 4.23.

Theorem 4.17.

Theorem 4.18.

Example 4.26.
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Lecture 8, 25 September 2013

Chapter 5

Section 5.1

Everything in the subsection “Ordinary Differential Equations” on the bottom of page

123 and the top of page 124.

Everything in the subsection “Stochastic Differential Equations” on page 126 until (but

not including) Example 5.3.

Example 5.5 and Example 5.3 as a special case there of.

Example 5.6.

Section 5.2

The definition Equation 5.17 (Equation 5.16 in the second edition) of stochastic expo-

nential.

Theorem 5.2.

The definition of stochastic logarithm just before Theorem 5.3.

Theorem 5.3. (A detailed proof of this theorem is given in Exercise session 4.)

Example 5.10.

Section 5.3

The definition of a general linear SDE in Equation 5.23 (Equation 5.22 in the second

edition)

The general linear SDE is solved explicitely in the book, but omit the details of these

calculations until possibly needed later.

Derive the solution to the Langevin type from the solution to the general linear SDE.

Section 5.4

Theorem 5.4. (A proof of this result is more or less included in the theory for numerical

solutions of SDE covered during Lectures 13 and 14.)
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Theorem 5.5.

Note that Theorems 5.4 and 5.5 only give sufficient conditions for existence and unique-

ness of strong solutions to SDE, but that many a specific SDE may display such existence

and uniqueness without these sufficient conditions being satisfied as they are in fact very

far from necessary.

Example 5.12.
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Lecture 9, 1 October 2013

Section 5.5

The Markov property Equation 5.42 (Equation 5.41 in the second edition).

The transition probability Equation 5.43 (Equation 5.42 in the second edition).

Theorem 5.6, with a motivation from the Euler scheme.

We will se a lot more about the Markov property of SDE in Lectures 12 and 13 on

numerical methods as well as in Lecture 14 about applications.

Section 5.6

Definition 5.8.

Definition 5.9.

Example 5.15.

Section 5.7

Theorems 5.10 and 5.11 as examples of such theorems.

The genarator Ls defined by Equation 5.51 (Equation 5.50 in the second edition).

Definition 5.12.

Theorem 5.13 with soft proof.

Example 5.17.

Section 5.8

Definition 5.14, Theorem 5.15 and Theorem 5.16 stripped of all their technicalities (more

or less).

Section 5.9

Equation 5.66 (Equation 5.65 in the second edition).

Definition 5.17.

Theorem 5.18.
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Theorem 5.19. (A detailed proof under weaker conditions is given in Exercise session

4.)

Theorem 5.20.
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Lecture 10, 2 October 2013

Chapter 6

Section 6.1

The genarator Lt defined by Equation 6.2.

Theorem 6.2 with soft proof.

Corollary 6.4.

Example 6.2.

Section 6.2

Theorem 6.8.

Section 6.3

Definition of a time homogeneous SDE in Equation 6.25.

Theorem 6.13.

Corollary 6.14.

Example 6.8.

Sections 6.4-6.5

This material is not included in the course.

Section 6.6

Definition 6.22.

Theorem 6.23.

Corollary 6.24.

Section 6.7

Definitions 6.25-6.26.

Theorem 6.27.

Theorem 6.28.

15



Section 6.8

This material is not included in the course.

Section 6.9

Equations 6.66-6.69.

Example 6.15.

Example 6.16.
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Lecture 11, 8 October 2013

Chapter 10

Section 10.1

Theorem 10.4.

Theorems 10.2 and 10.3 as special cases of Theorem 10.4.

Example 10.1.

Example 10.1 in Klebaner’ s book with n=10000000

N@CDF@NormalDistribution@6, 1D, 0DD

9.86588´10-10

Clear@rep, xD;rep=10000000;

Sum@8x=Random@NormalDistribution@0, 1DD, If@x<0, 1, 0D*Exp@6*x-18D<@@2DD, 8i, 1, rep<D�rep

9.86475´10-10

Section 10.2

Everything except Example 10.3.

Section 10.3

Everything on page 277 (page 275 in the second exition of Klebaner’s book).

Equations 10.31-10.35 from the subsection “Change of Drift in Diffusions”.

Theorems 10.15 and 10.16 as special cases of change of drift in diffusions.

Section 10.6

Everything from the subsection “Likelihood Ratios for Diffusions” (i.e., Equations 10.49-

10.60).
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