TMS165/MSA350 Stochastic Calculus Part I

Written Exam Wednesday 23 April 2014 8.30-12.30 am

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: None.
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4,21 points (70%) for grade VG and 24 points (80%) for grade 5 , respectively.

Motivations: All answers/solutions must be motivated.
Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. Show that $\left\{\int_{0}^{t} B(r) d r\right\}_{t \geq 0}$ is not a martingale wrt. the filtration $\mathcal{F}_{t}=\mathcal{F}_{t}^{B}$ generated by B. (5 points)

Task 2. Is it possible to find constants/coefficients $a, b, c \in \mathbb{R}$ such that $X(t)=B(t)^{3}+$ $a B(t)^{2}+b B(t)+c t$ becomes a martingale? (You may make use of the fact that $\int_{0}^{t} B(s) d s$ is not a martingale - see Task 1.) (5 points)

Task 3. Given constants $\alpha>0$ and $\beta \in \mathbb{R}$, solve the SDE

$$
d X(t)=-(\alpha X(t)+\beta) d t+d B(t) \quad \text { for } t>0, \quad X(0)=1
$$

Task 4. Find the solution $f(x, t)$ to the PDE

$$
\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial f}{\partial t}=0 \quad \text { for } t \in[0, T], \quad f(x, T)=x^{2}
$$

Task 5. Let $\{N(t)\}_{t \geq 0}$ be a unit rate Poisson process that is independent of B, where both processes are assumed to be defined on a common probability space $(\Omega, \mathcal{F}, \mathbf{P})$. Put $\Lambda(t)=\mathrm{e}^{(\ln 2) N(t)-t}$ for $t \in[0, T]$ and $d Q=\Lambda(T) d P$. Show that $\{B(t)\}_{t \in[0, T]}$ is a Brownian motion on the interval $[0, T]$ under the probability measure Q.
(5 points)
Task 6. Describe how the machinery of Itô-Taylor expansion works for a homogeneous SDE

$$
\begin{equation*}
d X(t)=\mu(X(t)) d t+\sigma(X(t)) d B(t) \quad \text { for } t>0 \tag{5points}
\end{equation*}
$$

TMS165/MSA350 Stochastic Calculus Part I

Solutions to Written Exam Wednesday 23 April 2014

Task 1. As $\mathbf{E}\left\{\int_{0}^{t} B(r) d r \mid \mathcal{F}_{s}\right\}=\int_{0}^{s} B(r) d r+\mathbf{E}\left\{\int_{s}^{t}(B(r)-B(s)) d r\right\}+(t-s) B(s)=$ $\int_{0}^{s} B(r) d r+(t-s) B(s)$ it is clear that $\int_{0}^{t} B(r) d r$ is not a martingale.

Task 2. As by Itôs's formula $d X(t)=\left(3 B(t)^{2}+2 a B(t)+b\right) d B(t)+(3 B(t)+a+c) d t$, where $\int_{0}^{t}\left(3 B(s)^{2}+2 a B(s)+b\right) d B(s)$ is a martingale, the answer to the query is yes if an only if $\int_{0}^{t}(3 B(s)+a+c) d s$ is also a martingale. To give this process constant mean (as is required for a martingale) we have to have $a+c=0$ so that the answer to the query is yes if an only if $a+c=0$ and $3 \int_{0}^{t} B(s) d s$ is a martingale. However we know that $3 \int_{0}^{t} B(s) d s$ is not a martingale from Task 1 .

Task 3. Writing $\hat{B}(t)=B(t)-\beta t$ we obtain the simpler Langevin type equation

$$
d X(t)=-\alpha X(t) d t+d \hat{B}(t) \quad \text { for } t>0, \quad X(0)=1,
$$

which by analogy with the Langevin equation (see Example 5.6 in Klebaner's book) has solution

$$
X(t)=\mathrm{e}^{-\alpha t}\left(1+\int_{0}^{t} \mathrm{e}^{\alpha s} d \hat{B}(s)\right)=\mathrm{e}^{-\alpha t}-\beta\left(1-\mathrm{e}^{-\alpha t}\right) / \alpha+\mathrm{e}^{-\alpha t} \int_{0}^{t} \mathrm{e}^{\alpha s} d B(s) .
$$

This process X in turn can easily be seen to verify the given SDE (if you have not been convinced about that already).

Task 4. This is Exercise 6.10 in Klebaner's book - see the solution on page 417 in that book.

Task 5. As B is a continuous process with quadratic variation $[B, B](t)=t$ it follows fron Levy's characterization of Brownian motion that it is enough to prove that B is a Q-martingale. To that end it is in turn by Corollary 10.11 in Klebaner's book necessary and sufficient to show that $\Lambda(t) B(t)$ is a \mathbf{P}-martingale wrt. the filtration $\mathcal{F}_{t}=\mathcal{F}_{t}^{B} \vee \mathcal{F}_{t}^{N}$ generated by B and N. To see this we calculate $\mathbf{E}\left\{\Lambda(t) B(t) \mid \mathcal{F}_{s}\right\}=$ $\mathrm{e}^{(\ln 2) N(s)-t} \mathbf{E}\left\{\mathrm{e}^{(\ln 2)(N(t)-N(s))}\right\} \mathbf{E}\left\{B(t) \mid \mathcal{F}_{s}\right\}=\mathrm{e}^{(\ln 2) N(s)-t} \mathrm{e}^{t-s} B(s)=\Lambda(s) B(s)$ for $s \leq$ t, since $\mathbf{E}\left\{\mathrm{e}^{(\ln 2)(N(t)-N(s))}\right\}=\sum_{k=0}^{\infty} 2^{k}(t-s)^{k} /\left(k!\mathrm{e}^{t-s}\right)=\mathrm{e}^{t-s}$.

Task 6. See page 12 in Stig's lecture notes.

