TMS165/MSA350 Stochastic Calculus

Written Exam Tuesday 28 October 2014 8.30-12.30 am

Teacher and Jour: Patrik Albin, telephone 070 6945709. Aids: None.
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.
Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. Show the Stratanovich chain rule $\partial(X(t) Y(t))=X(t) \partial Y(t)+Y(t) \partial X(t)$ for Itô processes $X(t)$ and $Y(t)$. (Here ∂ is the Stratanovich differential.) (5 points)

Task 2. Let $X(t)$ and $Y(t)$ be strictly positive Itô processes with $X(0)=Y(0)=1$. Is it true that $\mathcal{L}(X Y)(t)=\mathcal{L}(X)(t)+\mathcal{L}(Y)(t)$? (Here \mathcal{L} is the stochastic logarithm.)
(5 points)
Task 3. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of random variables with mean function $\mu_{n}=$ $\mathbf{E}\left\{X_{n}\right\}$ and covariance function $r_{m, n}=\operatorname{Cov}\left\{X_{m}, X_{n}\right\}$ such that $r_{n, n}=1$ for all n. Under what conditions on μ_{n} and $r_{m, n}$ do we have $\mathbf{E}\left\{\left(X_{n}-X\right)^{2}\right\} \rightarrow 0$ as $n \rightarrow \infty$ for some random variable X with $\mathbf{E}\left\{X^{2}\right\}<\infty$? (5 points)

Task 4. Let $f(x, t)$ be a function that has continuous first and second order partial derivatives. Under what additional conditions on $f(x, t)$ is $\left\{B(t)^{2}+f(B(t), t)\right\}_{t \in[0, T]}$ a martingale? (5 points)

Task 5. Find a PDE that is solved by the fair price $p(x, t)=\mathbf{E}\{\max \{X(T)-K, 0\} \mid$ $X(t)=x\}$ of an European call option at time $t \in[0, T)$ for an interest rate process $\{X(t)\}_{t \in[0, T]}$ given by the Vasicek SDE $d X(t)=a(b-X(t)) d t+c d B(t)$ for $t \in[0, T]$, $X(0)=x_{0}$. (Here $K, a, c>0$ and $b, x_{0} \in \mathbb{R}$ are givenm constants.) (5 points)

Task 6. Given sufficiently nice functions $\mu(x)$ and $\sigma(x)$ together with a constant $\lambda \in$ $(0,1)$ a composite Euler scheme for calculation of a numerical approximation Y_{N} of the exact value $X(T)$ of the solution of the $\operatorname{SDE} d X(t)=\mu(X(t)) d t+\sigma(X(t)) d B(t)$ for $t \in$ $(0, T], X(0)=X_{0}$, at $t=T$ is given by $Y_{0}=X_{0}$ together with the recursive scheme

$$
Y_{n}=Y_{n-1}+\left(\mu\left(Y_{n}\right)-f\left(Y_{n}\right)\right)\left(t_{n}-t_{n-1}\right)+\left(\lambda \sigma\left(Y_{n}\right)+(1-\lambda) \sigma\left(Y_{n-1}\right)\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right)
$$

for $n=1, \ldots, N$, where $0=t_{0}<t_{1}<\ldots<t_{N}=T$. Find the function $f(x)$ that makes Y_{N} converge to $X(T)$ as $\max _{1 \leq n \leq N} t_{n}-t_{n-1} \downarrow 0$.

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 28 October 2014

Task 1. This is Theorem 5.18 in Klebaner's book.
Task 2. By Theorem 5.3 in Klebaner's book we see that $\mathcal{L}(X Y)(t)=\int_{0}^{t} \frac{d[X Y, X Y](t)}{2 X(t)^{2} Y(t)^{2}}+$ $\ln (X(t) Y(t))=\int_{0}^{t} \frac{(d(X(t) Y(t)))^{2}}{2 X(t)^{2} Y(t)^{2}}+\ln (X(t))+\ln (Y(t))=\int_{0}^{t} \frac{(X(t) d Y(t)+Y(t) d X(t)+d[X, Y](t))^{2}}{2 X(t)^{2} Y(t)^{2}}$ $+\ln (X(t))+\ln (Y(t))=\int_{0}^{t} \frac{(X(t) d Y(t)+Y(t) d X(t))^{2}}{2 X(t)^{2} Y(t)^{2}}+\ln (X(t))+\ln (Y(t))=\int_{0}^{t} \frac{d X(t)^{2}}{2 X(t)^{2}}+$ $\ln (X(t))+\int_{0}^{t} \frac{d Y(t)^{2}}{2 Y(t)^{2}}+\ln (Y(t))+\int_{0}^{t} \frac{d X(t) d Y(t)}{X(t) Y(t)}=\mathcal{L}(X)(t)+\mathcal{L}(Y)(t)+\int_{0}^{t} \frac{d[X, Y](t)}{X(t) Y(t)}$, which is not equal to $\mathcal{L}(X)(t)+\mathcal{L}(Y)(t)$ in general.

Task 3. According to the Cauchy criterion we have the requested convergence if and only if $\mathbf{E}\left\{\left(X_{m}-X_{n}\right)^{2}\right\}=\operatorname{Var}\left\{X_{m}-X_{n}\right\}+\left(\mathbf{E}\left\{X_{m}-X_{n}\right\}\right)^{2}=2\left(1-r_{m, n}\right)+\left(\mu_{m}-\mu_{n}\right)^{2}$ $\rightarrow 0$ as $m, n \rightarrow \infty$, which is to say that $r_{m, n} \rightarrow 1$ as $m, n \rightarrow \infty$ and $\mu_{n} \rightarrow \mu$ for some $\mu \in \mathbb{R}$ as $n \rightarrow \infty$ (making use also of the Cauchy criterion for real sequences).
Task 4. As $d\left(B(t)^{2}\right)=2 B(t) d B(t)+d t$, where $2 \int_{0}^{t} B(s) d B(s)$ is a martingale, we see that $B(t)^{2}+f(B(t), t)$ is a martingale when $g(B(t), t)=f(B(t), t)+t$ is. By Itô's formula that in turn holds when $\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} g(x, t)+\frac{\partial}{\partial t} g(x, t)=\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}} f(x, t)+\frac{\partial}{\partial t} f(x, t)+1=0$ and $\int_{0}^{T}\left(\frac{\partial}{\partial x} f(B(t), t)\right)^{2} d t<\infty$, because then we have $B(t)^{2}+f(B(t), t)=\int_{0}^{t}(2 B(s)+$ $\left.\frac{\partial}{\partial x} f(B(s), s)\right) d B(s)$ with $\left\{2 B(t)+\frac{\partial}{\partial x} f(B(t), t)\right\}_{t \in[0, T]} \in E_{T}$.

Task 5. From Theorem 6.7 in Klebaner's book it follows that the PDE is

$$
L_{t} p(x, t)+\frac{\partial p(x, t)}{\partial t}=\frac{c^{2}}{2} \frac{\partial^{2} p(x, t)}{\partial x^{2}}+a(b-x) \frac{\partial p(x, t)}{\partial x}+\frac{\partial p(x, t)}{\partial t}=0 \quad \text { for } t \in[0, T)
$$

with $p(x, T)=\max \{x-K, 0\}$.
Task 6. According to the Euler method we have the convergence

$$
\sum_{n=1}^{N}\left(\mu\left(Y_{n-1}\right)\left(t_{n}-t_{n-1}\right)+\sigma\left(Y_{n-1}\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right)\right) \rightarrow X(T)
$$

as $\max _{1 \leq n \leq N} t_{n}-t_{n-1} \downarrow 0$. Here we have

$$
\mu\left(Y_{n-1}\right)\left(t_{n}-t_{n-1}\right) \approx\left(\mu\left(Y_{n}\right)-\mu^{\prime}\left(Y_{n}\right)\left(Y_{n}-Y_{n-1}\right)\right)\left(t_{n}-t_{n-1}\right) \approx \mu\left(Y_{n}\right)\left(t_{n}-t_{n-1}\right)
$$

and

$$
\begin{aligned}
\sigma\left(Y_{n-1}\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right) & \approx\left(\sigma\left(Y_{n}\right)-\sigma^{\prime}\left(Y_{n}\right)\left(Y_{n}-Y_{n-1}\right)\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right) \\
& \approx \sigma\left(Y_{n}\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right)-\sigma^{\prime}\left(Y_{n}\right) \sigma\left(Y_{n}\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right)^{2} \\
& \approx \sigma\left(Y_{n}\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right)-\sigma^{\prime}\left(Y_{n}\right) \sigma\left(Y_{n}\right)\left(t_{n}-t_{n-1}\right),
\end{aligned}
$$

so that we must have $f(x)=\lambda \sigma^{\prime}(x) \sigma(x)$.

