TMS165/MSA350 Stochastic Calculus

Written Exam Tuesday 27 October 2015 8.30-12.30 am

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.
Motivations: All answers/solutions must be motivated.
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion. And Good Luck!
Task 1. Explain how one can actually construct a unit mean exponentially distributed random variable $X: \Omega \rightarrow \mathbb{R}$ on a sample space Ω with a probability measure \mathbf{P} (such that $\mathbf{P}\{X \leq x\}=1-\mathrm{e}^{-x}$ for $x \geq 0$). (5 points)

Task 2. Show that $\int_{0}^{t} B(u) d u-\frac{1}{3} B(t)^{3}$ is a martingale. (5 points)
Task 3. State and prove the isometry property of the Itô integral of simple adapted processes. (5 points)

Task 4. Find $X(t)$ if $d\left(\mathrm{e}^{B(t)}\right)=\mathrm{e}^{B(t)} d X(t)$ and $X(0)=0$. (5 points)
Task 5. Given real numbers σ, μ and r, find the solution $f(x, t)$ to the PDE $\frac{\partial f(x, t)}{\partial t}+\frac{\sigma^{2}}{2} \frac{\partial^{2} f(x, t)}{\partial x^{2}}+\mu \frac{\partial f(x, t)}{\partial x}=r f(x, t)$ for $t \in[0, T], \quad f(x, T)=x^{2} . \quad$ (5 points)

Task 6. The explicit Euler method for finding a numerical solution $\hat{X}(t)$ to the SDE

$$
d X(t)=\mu(X(t), t) d t+\sigma(X(t), t) d B(t) \quad \text { for } t \in(0, T], \quad X(0)=x_{0}
$$

based on iteration over the grid $0=t_{0}<t_{1}<\ldots<t_{n}=T$ goes like $\hat{X}\left(t_{0}\right)=x_{0}$ and

$$
\hat{X}\left(t_{i}\right)-\hat{X}\left(t_{i-1}\right)=\mu\left(\hat{X}\left(t_{i-1}\right), t_{i-1}\right)\left(t_{i}-t_{i-1}\right)+\sigma\left(\hat{X}\left(t_{i-1}\right), t_{i-1}\right)\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)
$$

for $i=1, \ldots, n$. The fully implicit Euler method for the same task uses $\mu\left(\hat{X}\left(t_{i}\right), t_{i}\right)$ and $\sigma\left(\hat{X}\left(t_{i}\right), t_{i}\right)$ instead of $\mu\left(\hat{X}\left(t_{i-1}\right), t_{i-1}\right)$ and $\sigma\left(\hat{X}\left(t_{i-1}\right), t_{i-1}\right)$ above (and is typically much more "stable"): Explain why the implicit method is not just as simple as $\hat{X}\left(t_{i}\right)-\hat{X}\left(t_{i-1}\right)=\mu\left(\hat{X}\left(t_{i}\right), t_{i}\right)\left(t_{i}-t_{i-1}\right)+\sigma\left(\hat{X}\left(t_{i}\right), t_{i}\right)\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right) \quad$ for $i=1, \ldots, n$, but requires more modifications than just replacing $\left(\hat{X}\left(t_{i-1}\right), t_{i-1}\right)$ with $\left(\hat{X}\left(t_{i}\right), t_{i}\right)$ at two locations. (5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 27 October 2015

Task 1. Take $\Omega=[0, \infty), X(\omega)=\omega$ for $\omega \in \Omega$ and $\mathbf{P}\{[a, b]\}=\int_{a}^{b} \mathrm{e}^{-y} d y$ for $[a, b] \subseteq \Omega$ to obtain $\mathbf{P}\{X \leq x\}=\mathbf{P}\{\omega \in \Omega: X(\omega) \leq x\}=\mathbf{P}\{\omega \leq x\}=\mathbf{P}\{[0, x]\}=1-\mathrm{e}^{-x}$.

Task 2. By Itô's formula we have $d\left(\int_{0}^{t} B(u) d u-\frac{1}{3} B(t)^{3}\right)=B(t) d t-B(t)^{2} d B(t)-$ $B(t) d t=-B(t)^{2} d B(t)$, so that $\int_{0}^{t} B(u) d u-\frac{1}{3} B(t)^{3}=-\int_{0}^{t} B(u)^{2} d B(u)$ which is a martingale since $-B^{2} \in E_{T}$ for any $T \geq 0$.

Task 3. This is Property 4 of the properties of the Itô integral of simple adapted processes listed on pages $93-94$ in Klebaner's book: See the proof of that property on pages 94-95 in Klebaner's book.

Task 4. As $X(t)$ is the stochastic logarithm of $\mathrm{e}^{B(t)}$, we have $X(t)=\ln \left(\mathrm{e}^{B(t)} / \mathrm{e}^{B(0)}\right)+$ $\int_{0}^{t} d\left(\mathrm{e}^{B(s)}\right)^{2} /\left(2\left(\mathrm{e}^{B(s)}\right)^{2}\right)=B(t)+\int_{0}^{t} d s / 2=B(t)+t / 2$.

Task 5. Feynman-Kac formula gives $f(x, t)=\mathbf{E}\left\{\mathrm{e}^{-r(T-t)} X(T)^{2} \mid X(t)=x\right\}$, where $X(t)$ solves the $\operatorname{SDE} d X(t)=\mu d t+\sigma d B(t)$, so that $X(t)=X(0)+\mu t+\sigma B(t)$ and $X(T)=$ $X(t)+\mu(T-t)+\sigma(B(T)-B(t))$, giving $f(x, t)=\mathrm{e}^{-r(T-t)}\left(\sigma^{2}(T-t)+(\mu(T-t)+x)^{2}\right)$.

Task 6. The reason is that $\sum_{i=1}^{n}\left(\sigma\left(X\left(t_{i}\right), t_{i}\right)-\sigma\left(X\left(t_{i-1}\right), t_{i-1}\right)\right)\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right) \rightarrow$ $[\sigma(X(t), t), B(t)]=\int_{0}^{t} d[\sigma(X(s), s), B(s)]=\int_{0}^{t} d \sigma(X(s), s) d B(s)=\int_{0}^{t}\left(\sigma_{x}^{\prime}(X(s), s) d X\right.$ $\left.(s)+\frac{1}{2} \sigma_{x x}^{\prime \prime}(X(s), s) d[X, X](s)+\sigma_{t}^{\prime}(X(s), s) d s\right) d B(s)=\int_{0}^{t} \sigma_{x}^{\prime}(X(s), s) \sigma(X(s), s) d B(s)^{2}$ $=\int_{0}^{t} \sigma_{x}^{\prime}(X(s), s) \sigma(X(s), s) d s$ is not zero (in general).

