TMS165/MSA350 Stochastic Calculus

Written Exam Tuesday 27 October 2015 8.30–12.30 am

TEACHER AND JOUR: Patrik Albin, telephone 070 6945709.

AIDS: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).

GRADES: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated.

Througout this exam $B = \{B(t)\}_{t \ge 0}$ denotes a Brownian motion. AND GOOD LUCK!

Task 1. Explain how one can actually construct a unit mean exponentially distributed random variable $X : \Omega \to \mathbb{R}$ on a sample space Ω with a probability measure **P** (such that $\mathbf{P}\{X \le x\} = 1 - e^{-x}$ for $x \ge 0$). (5 points)

Task 2. Show that $\int_0^t B(u) du - \frac{1}{3}B(t)^3$ is a martingale. (5 points)

Task 3. State and prove the isometry property of the Itô integral of simple adapted processes. (5 points)

Task 4. Find
$$X(t)$$
 if $d(e^{B(t)}) = e^{B(t)} dX(t)$ and $X(0) = 0$. (5 points)

Task 5. Given real numbers σ , μ and r, find the solution f(x,t) to the PDE $\frac{\partial f(x,t)}{\partial t} + \frac{\sigma^2}{2} \frac{\partial^2 f(x,t)}{\partial x^2} + \mu \frac{\partial f(x,t)}{\partial x} = rf(x,t) \text{ for } t \in [0,T], \quad f(x,T) = x^2.$ (5 points)

Task 6. The explicit Euler method for finding a numerical solution $\hat{X}(t)$ to the SDE

$$dX(t) = \mu(X(t), t) dt + \sigma(X(t), t) dB(t) \text{ for } t \in (0, T], \quad X(0) = x_0,$$

based on iteration over the grid $0 = t_0 < t_1 < \ldots < t_n = T$ goes like $\hat{X}(t_0) = x_0$ and

$$\hat{X}(t_i) - \hat{X}(t_{i-1}) = \mu(\hat{X}(t_{i-1}), t_{i-1}) \left(t_i - t_{i-1} \right) + \sigma(\hat{X}(t_{i-1}), t_{i-1}) \left(B(t_i) - B(t_{i-1}) \right)$$

for i = 1, ..., n. The fully implicit Euler method for the same task uses $\mu(\hat{X}(t_i), t_i)$ and $\sigma(\hat{X}(t_i), t_i)$ instead of $\mu(\hat{X}(t_{i-1}), t_{i-1})$ and $\sigma(\hat{X}(t_{i-1}), t_{i-1})$ above (and is typically much more "stable"): Explain why the implicit method is not just as simple as

$$\hat{X}(t_{i}) - \hat{X}(t_{i-1}) = \mu(\hat{X}(t_{i}), t_{i}) (t_{i} - t_{i-1}) + \sigma(\hat{X}(t_{i}), t_{i}) (B(t_{i}) - B(t_{i-1})) \quad \text{for } i = 1, \dots, n,$$

but requires more modifications then just replacing $(\hat{X}(t_{i-1}), t_{i-1})$ with $(\hat{X}(t_{i-1}), t_{i-1})$

but requires more modifications than just replacing $(X(t_{i-1}), t_{i-1})$ with $(X(t_i), t_i)$ at two locations. (5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 27 October 2015

Task 1. Take $\Omega = [0, \infty)$, $X(\omega) = \omega$ for $\omega \in \Omega$ and $\mathbf{P}\{[a, b]\} = \int_a^b e^{-y} dy$ for $[a, b] \subseteq \Omega$ to obtain $\mathbf{P}\{X \le x\} = \mathbf{P}\{\omega \in \Omega : X(\omega) \le x\} = \mathbf{P}\{\omega \le x\} = \mathbf{P}\{[0, x]\} = 1 - e^{-x}$.

Task 2. By Itô's formula we have $d\left(\int_0^t B(u) \, du - \frac{1}{3}B(t)^3\right) = B(t) \, dt - B(t)^2 \, dB(t) - B(t) \, dt = -B(t)^2 \, dB(t)$, so that $\int_0^t B(u) \, du - \frac{1}{3}B(t)^3 = -\int_0^t B(u)^2 \, dB(u)$ which is a martingale since $-B^2 \in E_T$ for any $T \ge 0$.

Task 3. This is Property 4 of the properties of the Itô integral of simple adapted processes listed on pages 93-94 in Klebaner's book: See the proof of that property on pages 94-95 in Klebaner's book.

Task 4. As X(t) is the stochastic logarithm of $e^{B(t)}$, we have $X(t) = \ln \left(e^{B(t)} / e^{B(0)} \right) + \int_0^t d(e^{B(s)})^2 / (2 (e^{B(s)})^2) = B(t) + \int_0^t ds / 2 = B(t) + t/2.$

Task 5. Feynman-Kac formula gives $f(x,t) = \mathbf{E} \{ e^{-r(T-t)} X(T)^2 | X(t) = x \}$, where X(t) solves the SDE $dX(t) = \mu dt + \sigma dB(t)$, so that $X(t) = X(0) + \mu t + \sigma B(t)$ and $X(T) = X(t) + \mu (T-t) + \sigma (B(T) - B(t))$, giving $f(x,t) = e^{-r(T-t)} (\sigma^2 (T-t) + (\mu (T-t) + x)^2)$.

Task 6. The reason is that $\sum_{i=1}^{n} \left(\sigma(X(t_i), t_i) - \sigma(X(t_{i-1}), t_{i-1}) \right) \left(B(t_i) - B(t_{i-1}) \right) \rightarrow [\sigma(X(t), t), B(t)] = \int_{0}^{t} d[\sigma(X(s), s), B(s)] = \int_{0}^{t} d\sigma(X(s), s) \, dB(s) = \int_{0}^{t} \left(\sigma'_{x}(X(s), s) \, dX(s) + \frac{1}{2} \sigma''_{xx}(X(s), s) \, d[X, X](s) + \sigma'_{t}(X(s), s) \, ds \right) \, dB(s) = \int_{0}^{t} \sigma'_{x}(X(s), s) \sigma(X(s), s) \, dB(s)^{2} = \int_{0}^{t} \sigma'_{x}(X(s), s) \sigma(X(s), s) \, ds$ is not zero (in general).