TMS 165/MSA350 Stochastic Calculus

Solved Exercises for Chapters 4-5 in Klebaner’s book
Througout this exercise session B = {B(t) }+>0 denotes Brownian motion.

Exercise 1. For two It6 processes X = {X(t)},cjo,r) and Y = {Y'(¢) };c[o,7] the Strat-

onovich integral process { fg X 0Y }iejo,r) of X wrt. Y is defined as
t t 1
/ X@Yz/ Xay + S[X,Y]() for t€[0,7]
0 0

(see also Section 5.9 in Klebaner’s book). With this notation, show that df (X (t)) =
f(X(t))0X (t) for f two times continuously differentiable.

Solution. First we must agree on what is the exact meaning of the statement we are

challanged to show, that df (X (t)) = f/(X(¢)) 9X(t). And that in turn must be that

FX(1)) — F(X(0)) = /0 f1(X)0x

Now, by the definition of the Stratonovich integral we have

| reoex = [ reoax e, xe.
0 0

Here the arguments from Example 4.23 in Klebaner’s book carry over with only obvious

modifications to show that

700X10 = [ 5100 dx.X)
/f ax/f dX+/f” X].

But the right-hand side of this in turn equals f(X(¢)) — f(X(0)) by Ito’s formula Theo-

so that

rem 4.16 in Klebaner’s book. (Note that we only require f to be two times continuously
differentiable in this exercise, rather than three times continuously differentiable as is

required in the corresponding Theorem 5.19 in Klebaner’s book.)

Exercise 2. Show that for a process X € Er the following process is a martingale

{([ram) - [rraf



Solution. If we have proved that the above process is a martingale for X € Sp, then

given an X € Er, we may pick a sequence {X,,}7°,; C Sr such that

i E{/OT(Xn(t) — X(1))? dt} _

t t
/XndBH/XdB as n— 0o
0 0

and

for t € [0, T] in the sense of convergence in IL?. From this in turn we conclude by means

of reapeted use of Hélder’s inequality that

{ )2ds — /OtX(s)zds }

{ Xo(5) = X(5)) (X (s) + X (5)) ds }

AlDevrefn s

g\/E{ / (Xa(s) = X (s >>2ds}\/ e{ [ <Xn<>+x<s>>2ds}

< \/E{/OT(Xn(s)—X(s))st}\/2E{/0:F(Xn(s)—X(s))2ds}+2E{/(]T(2X(s))2ds}

—0 as n—o

| /\

and similarly using also the isometry property
) (fre)
:E{‘(/O XndB—/OXdB> (/0 XndBJr/OXdB)'}
([ ()
- \/E{/Ot(Xn(s)—X(s))2ds}\/E{/Ot(Xn(s)—l—X(s))st}

— 0 as n— o0,

so that

t t t 2 t 2
/Xn(5)2d5—>/X(s)2ds and </ XndB> — (/XdB) as n— oo
0 0 0 0

for t € [0, T] in the sense of convergence in L'. Hence we may use Exercise 3 of Exer-

cise Seesion 3 together with the assume proven martingale property when X, € St to



conclude that

E thB T tX(r)er Fsp —E tXndB " tXn(r)2dr Fs
0 0 0 ) 0
= (/OSXndB> —/OSXn(r)er

s 2 s
— </XdB) —/X(T’)QdT as n— oo
0 0

for 0 < s <t <T in the sense of convergence in L', thereby establishing the requested

martingale property for X € Erp.

Pick a grid 0=tp <t; < ... <t, =T and consider an X € St given by

n—1
X(t) =TIy () mo + > Lty ()& for te[0,T7,
i=0
where 79 is Fp-measurable and &; is F;,-measurable for i =0,...,n—1. Recall that

/thB _ Z i (B(tiv1) — B(ti)) + &m (B(t) — B(tm)) for t € (tm,tm+1]

0 for t=0
In order to prove the martingale property

([ oar)- [xoea| )~ ([xar)- [ xora

for 0 < s <t <T we may without loss of generality assume that s =t; and ¢ = ¢, for

some 0 <j<k<nasthegrid 0=ty<t; < ... <t, =T can otherwise be enriched to

accomodate s and t without affecting the values of

<AthB>2_/OtX(T)2dr and </08Xd3>2_/05X(T)2dT

Here the random variable to the right is Fs-measurable, and therefore simple algebraic

manipulations show that the martingale property to be established holds if

E{ </OtX dB>2—</OSX dB)Q—/:X(r)2dr }'5}
:E{(/:XdB>2+2/OSXdB/:XdB—/StX(r)2dr

=0.

7}

That this identity holds in turn follows from the facts that



=0

E{/OstB/:XdB‘}"S} (/ XdB>ZE{§ZE{ tiv1) — B(t:))|F,
and similarly
o{([ <)}

= ZE{Q E{(B(tit1) — B(t:))?| F1, } | Fs }

+2 Y B{& & (B(tiy11) — B(ti) B{(B(ti41) — B(ti,))| Fr,,i } | Fs }

j<ir<ip<k—1

k—1
=Y B{& (tis1 —t:)*|Fs} +0
i=j

= E{/:X(T)2d7" ]—'s}.

It is tempting to try to solve the exercise by means of applying It6’s formula, which

readily gives

</OtX dB>2—/OtX(s)2ds = 2/0t</05X(r) dB(r)) X(s)dB(s).

Here we know that fo r)dB(r) and X(s) are both square-integrable. But this only
implies that ( f5 X dB( )) X (s) is integrable (rather than square-integrable) in gen-
eral, and therefore we cannot conclude that the process on the right-hand side is a
martingale form what we have learned so far.

Exercise 3. Prove Ito’s formula Theorem 4.13 in Klebaner’s book.

Solution. We shall prove that for a two times continuously differentiable function f it

holds that

FB@) = 1BO) + [ FBE)aBC) + 5 [ B o >0,

To that end we consider partitions 0 =ty < t; < ... <t, =t of the interval [0,¢] that

becomes finer and finer so that maxij<;<nt; —t;—1 | 0. By Taylor expansion we have

F(B(1)) - Zf (B(t: 1))



5 30 (Bl ) (Blt) — Blti 1))’
=1

nLB(t;)
#3 [ B (0~ B dr

i=1 7 Bti-1)
Here the first term on the right-hand side converges to fg f'(B) dB in probability as f(B)
is a continuous and adapted process. Moreover, recalling that the quadratic variation of
B over an interval equals the length of that interval it follows that the second term on the
right-hand side converges to 3 fg f"(B(r)) dr by means of introducing a second cruder
grid {t;}}",, approximating the value of f”(B(t;-1)) by f"(B(t;_,)) for an appropriate
J, and sending first maxi<ij<n t; — t;—1 | 0 and then maxi<j<m t; — t;;l 1 0 afterwards,
as this makes it possible to replace (B(t;) — B(t;_1))? with t; —t;_1 in the first limit
as maxi<j<n t; — ti—1 | 0 and the approximation of f"(B(t;—1))-values by f"(B(t;_;))-
values is accurate in the second limit as maxi<j<mt; —t;_; | 0 by the continuity of

f"(B). Finally, the third term on the right-hand side is bounded by
B(t:)

sup 11" (B(r)) = f(B(s)) Z/ (B(ti) —r)dr

r,s€[0,T7], \r—s|glrél%xn ti—ti—1 i—1 7/ Bti-1)

= sup |f”(B(7"))_f”(B(S))‘ Z

,S€[0,T7], [r—s|< ti—ti— —
rs€[0T] [r—s|< max ti—ti P
t
—0x -
2

Exercise 4. One can prove the following important generalization of It6’s formula
Theorem 4.16 in Klebaner’s book: For an It6 process { X (t)}cp,7] all values of which
belong to an open interval I C R with probability 1 and a two times continuously

differentiable function f:I — R it holds that
1
df(X(1)) = f(X(8) dX () + 5 f(X(2)) d[X, X](t) for € [0,T].
Use this result to give a detailed proof of Theorem 5.3 in Klebaner’s book.

Solution. Let {U(t)}ic[o,7] be a strictly positive It6 process with probability 1. Then
we may apply the above mentioned generalized It6 formula to the function Y (t) =
log(U(t)) —1log(U(0)) to conclude that

a¥ (t) = U (t)

9

1 d[U](t)
Ut) 2 U(t)?

5



so that

U(t) d<log(g((é))) + % /Ot dgﬁg?) - U(t)d(Y(t) + ;/Ot dglg?) — dU(1).

This means that the It6 process

_ Uy , 1 [tduir)
LU®)) zlog<W> +2/0 Tk

has stochastic exponential U(t) and therefore is the stochastic logarithm of U(t). By
multiplying both sides of the above equation by 1/U(t) we also see that L(U(t)) obeys

the equation
1

U(t)
(Note that this SDE is not of diffusion type in general.)

AL(U®)) = —— dU(t), L(U(0)) = 0.

Exercise 5. The filtration {F;} that features in the construction of the It6 integral
process need not necessarily be the filtration {FP} generated by B itself, but can
more generally be as in Remark 3.1 in Klebaner’s book. In particular, if {B;(¢)}+>0
and {Bz(t)}+>0 are independent Brownian motions, then we may employ the filtration
{Fi}e0 given by Fi = o(FP1, FP1) for t > 0 to be able to simultaneuously consider Ito
integral process (and therefore also SDE) with respect to both By and Bs.

The Nobel prize awarded Black-Scholes-Merton SDE

dX(t) =r X(t)dt + o X(t)dB(t) for t>0, X(0)=uo,

for future values { X (¢) }+~0 of a financial asset with an uncertain rate of return might be
generalized to a model that can much more accurately model real worls financial assets,
such as e.g., stock prices as follows: With the notation from the previous paragraph,

consider the SDE (not in general of diffusion type)
dX(t) =r X(t)dt +o(t) X(t)dBy(t) for t>0, X(0)=ux,

where the constant so called volatility parameter o € R of the Black-Scholes-Merton
SDE has been replaced with a random volatility process {o(t)}+>0 that can model a
market that features a time variable uncertainty for the rate of the return. Solve this

more general SDE when the volatility process {o(t)}+>0 is given by the SDE

do(t) = —ao(t)dt + fdBa(t) for t>0, o(0)=o0y,



where o, 3 > 0 are positive real constants (as is 7).

Solution. Identifying X as a stochastic exponential we get

X(t) = 7 exp{rt— ;/Ota(s)2ds+/0ta(s) dBl(s)} for ¢>0

(see Section 5.3 in Klebaner’s book), where o in turn is recognized as the solution to a

Langevin type SDE

o (1) :exp{—/ota(s) ds} (00+ﬂ/0texp{/osa(r) dr}ng(s)) for £>0

(see Example 5.6 and Section 5.3 in Klebaner’s book).
Exercise 6. Solve the SDE
X(t)
dX(t) = ]ﬂﬂX@P+4§— dt ++/14+ X (¢)2dB(t) for t>0, X(0)=0.

Solution. First notice that all conditions of Theorem 5.4 in Klebaner’s book are
satisfied, so that it is clear that the SDE has a well-defined and unique solution. Now,
employing divine inspiration we readily arrive at the idea to try the transformation
Y (t) = sinh ™' (X(t)). By an application of It6’s formula Theorem 4.16 in Klebaner’s

book we then get

o X
D) = sy X0 — 5 i X X0
catr—2D a2y

2\/1+X(t)? 2\/1+X(t)?

— dt + dB(t),

with the obvious solution Y (t) = ¢+ B(¢) [remembering that Y (0) = 0]. Hence the
solution to the SDE must be X (¢) = sinh(¢+ B(t)). That this process X really solves
the SDE is also easy to check by means of direct calculations using It6’s formula Theorem

4.18 in Klebaner’s book together with the hyperbolic unit formula.



