
TMS 165/MSA350 Stochastic Calculus

Solved Exercises for Chapters 4-5 in Klebaner’s book

Througout this exercise session B = {B(t)}t≥0 denotes Brownian motion.

Exercise 1. For two Itô processes X = {X(t)}t∈[0,T ] and Y = {Y (t)}t∈[0,T ] the Strat-

onovich integral process {
∫ t
0 X ∂Y }t∈[0,T ] of X wrt. Y is defined as

∫ t

0
X ∂Y ≡

∫ t

0
X dY +

1

2
[X, Y ](t) for t∈ [0, T ]

(see also Section 5.9 in Klebaner’s book). With this notation, show that df(X(t)) =

f ′(X(t)) ∂X(t) for f two times continuously differentiable.

Solution. First we must agree on what is the exact meaning of the statement we are

challanged to show, that df(X(t)) = f ′(X(t)) ∂X(t). And that in turn must be that

f(X(t))− f(X(0)) =

∫ t

0
f ′(X) ∂X.

Now, by the definition of the Stratonovich integral we have

∫ t

0
f ′(X) ∂X =

∫ t

0
f ′(X) dX +

1

2
[f ′(X), X](t).

Here the arguments from Example 4.23 in Klebaner’s book carry over with only obvious

modifications to show that

[f ′(X), X](t) =

∫ t

0
f ′′(X) d[X, X],

so that
∫ t

0
f ′(X) ∂X =

∫ t

0
f ′(X) dX +

1

2

∫ t

0
f ′′(X) d[X, X].

But the right-hand side of this in turn equals f(X(t))− f(X(0)) by Itô’s formula Theo-

rem 4.16 in Klebaner’s book. (Note that we only require f to be two times continuously

differentiable in this exercise, rather than three times continuously differentiable as is

required in the corresponding Theorem 5.19 in Klebaner’s book.)

Exercise 2. Show that for a process X ∈ET the following process is a martingale

{(
∫ t

0
X dB

)2

−

∫ t

0
X(s)2 ds

}

t∈[0,T ]

.
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Solution. If we have proved that the above process is a martingale for X ∈ ST , then

given an X ∈ET , we may pick a sequence {Xn}
∞
n=1 ⊆ ST such that

lim
n→∞

E

{
∫ T

0
(Xn(t)−X(t))2 dt

}

= 0

and
∫ t

0
Xn dB →

∫ t

0
X dB as n→∞

for t∈ [0, T ] in the sense of convergence in L
2. From this in turn we conclude by means

of reapeted use of Hölder’s inequality that

E

{
∣

∣

∣

∣

∫ t

0
Xn(s)2 ds−

∫ t

0
X(s)2 ds

∣

∣

∣

∣

}

= E

{∣

∣

∣

∣

∫ t

0
(Xn(s)−X(s)) (Xn(s)+X(s)) ds

∣

∣

∣

∣

}

≤ E

{

√

∫ t

0
(Xn(s)−X(s))2 ds

√

∫ t

0
(Xn(s)+X(s))2 ds

}

≤

√

E

{
∫ t

0
(Xn(s)−X(s))2 ds

}

√

E

{
∫ t

0
(Xn(s)+X(s))2 ds

}

≤

√

E

{
∫ T

0
(Xn(s)−X(s))2 ds

}

√

2E

{
∫ T

0
(Xn(s)−X(s))2 ds

}

+ 2E

{
∫ T

0
(2X(s))2 ds

}

→ 0 as n→∞

and similarly using also the isometry property

E

{
∣

∣

∣

∣

(
∫ t

0
Xn dB

)2

−

(
∫ t

0
X dB

)2∣
∣

∣

∣

}

= E

{∣

∣

∣

∣

(
∫ t

0
Xn dB −

∫ t

0
X dB

)(
∫ t

0
Xn dB +

∫ t

0
X dB

)∣

∣

∣

∣

}

≤

√

E

{(
∫ t

0
(Xn−X) dB

)2}
√

E

{(
∫ t

0
(Xn+X) dB

)2}

=

√

E

{
∫ t

0
(Xn(s)−X(s))2 ds

}

√

E

{
∫ t

0
(Xn(s)+X(s))2 ds

}

→ 0 as n→∞,

so that

∫ t

0
Xn(s)2 ds→

∫ t

0
X(s)2 ds and

(
∫ t

0
Xn dB

)2

→

(
∫ t

0
X dB

)2

as n→∞

for t ∈ [0, T ] in the sense of convergence in L
1. Hence we may use Exercise 3 of Exer-

cise Seesion 3 together with the assume proven martingale property when Xn ∈ ST to
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conclude that

E

{(
∫ t

0
X dB

)2

−

∫ t

0
X(r)2 dr

∣

∣

∣

∣

Fs

}

← E

{(
∫ t

0
Xn dB

)2

−

∫ t

0
Xn(r)2 dr

∣

∣

∣

∣

Fs

}

=

(
∫ s

0
Xn dB

)2

−

∫ s

0
Xn(r)2 dr

→

(
∫ s

0
X dB

)2

−

∫ s

0
X(r)2 dr as n→∞

for 0 ≤ s < t ≤ T in the sense of convergence in L
1, thereby establishing the requested

martingale property for X ∈ET .

Pick a grid 0 = t0 < t1 < . . . < tn = T and consider an X ∈ ST given by

X(t) = I{0}(t)η0 +
n−1
∑

i=0

I(ti,ti+1](t)ξi for t∈ [0, T ],

where η0 is F0-measurable and ξi is Fti-measurable for i = 0, . . . , n−1. Recall that

∫ t

0
X dB =



















m−1
∑

i=0

ξi (B(ti+1)−B(ti)) + ξm (B(t)−B(tm)) for t∈ (tm, tm+1]

0 for t = 0

.

In order to prove the martingale property

E

{(
∫ t

0
X dB

)2

−

∫ t

0
X(r)2 dr

∣

∣

∣

∣

Fs

}

=

(
∫ s

0
X dB

)2

−

∫ s

0
X(r)2 dr

for 0 ≤ s < t ≤ T we may without loss of generality assume that s = tj and t = tk for

some 0≤ j < k ≤ n as the grid 0 = t0 < t1 < . . . < tn = T can otherwise be enriched to

accomodate s and t without affecting the values of

(
∫ t

0
X dB

)2

−

∫ t

0
X(r)2 dr and

(
∫ s

0
X dB

)2

−

∫ s

0
X(r)2 dr.

Here the random variable to the right is Fs-measurable, and therefore simple algebraic

manipulations show that the martingale property to be established holds if

E

{(
∫ t

0
X dB

)2

−

(
∫ s

0
X dB

)2

−

∫ t

s
X(r)2 dr

∣

∣

∣

∣

Fs

}

= E

{(
∫ t

s
X dB

)2

+2

∫ s

0
X dB

∫ t

s
X dB −

∫ t

s
X(r)2 dr

∣

∣

∣

∣

Fs

}

= 0.

That this identity holds in turn follows from the facts that
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E

{
∫ s

0
X dB

∫ t

s
X dB

∣

∣

∣

∣

Fs

}

=

(
∫ s

0
X dB

)k−1
∑

i=j

E
{

ξi E
{

(B(ti+1)−B(ti))
∣

∣Fti

}∣

∣Fs

}

= 0

and similarly

E

{(
∫ t

s
X dB

)2∣
∣

∣

∣

Fs

}

=
k−1
∑

i=j

E
{

ξ2
i E

{

(B(ti+1)−B(ti))
2
∣

∣Fti

}
∣

∣Fs

}

+ 2
∑

j≤i1<i2≤k−1

E
{

ξi1 ξi2 (B(ti1+1)−B(ti1))E
{

(B(ti2+1)−B(ti2))
∣

∣Fti2 i

}
∣

∣Fs

}

=

k−1
∑

i=j

E
{

ξ2
i (ti+1− ti)

2
∣

∣Fs

}

+ 0

= E

{
∫ t

s
X(r)2 dr

∣

∣

∣

∣

Fs

}

.

It is tempting to try to solve the exercise by means of applying Itô’s formula, which

readily gives

(
∫ t

0
X dB

)2

−

∫ t

0
X(s)2 ds = 2

∫ t

0

(
∫ s

0
X(r) dB(r)

)

X(s) dB(s).

Here we know that
∫ s
0 X(r) dB(r) and X(s) are both square-integrable. But this only

implies that
( ∫ s

0 X(r) dB(r)
)

X(s) is integrable (rather than square-integrable) in gen-

eral, and therefore we cannot conclude that the process on the right-hand side is a

martingale form what we have learned so far.

Exercise 3. Prove Itô’s formula Theorem 4.13 in Klebaner’s book.

Solution. We shall prove that for a two times continuously differentiable function f it

holds that

f(B(t)) = f(B(0)) +

∫ t

0
f ′(B(r)) dB(r) +

1

2

∫ t

0
f ′′(B(r)) dr for t > 0.

To that end we consider partitions 0 = t0 < t1 < . . . < tn = t of the interval [0, t] that

becomes finer and finer so that max1≤i≤n ti − ti−1 ↓ 0. By Taylor expansion we have

f(B(t))− f(B(0)) =
n

∑

i=1

f(B(ti))− f(B(ti−1))
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=
n

∑

i=1

f ′(B(ti−1)) (B(ti)−B(ti−1))

+
1

2

n
∑

i=1

f ′′(B(ti−1)) (B(ti)−B(ti−1))
2

+
n

∑

i=1

∫ B(ti)

B(ti−1)
(B(ti)− r) (f ′′(r)−f ′′(B(ti−1))) dr.

Here the first term on the right-hand side converges to
∫ t
0 f ′(B) dB in probability as f(B)

is a continuous and adapted process. Moreover, recalling that the quadratic variation of

B over an interval equals the length of that interval it follows that the second term on the

right-hand side converges to 1
2

∫ t
0 f ′′(B(r)) dr by means of introducing a second cruder

grid {t′j}
m
j=1, approximating the value of f ′′(B(ti−1)) by f ′′(B(t′j−1)) for an appropriate

j, and sending first max1≤i≤n ti − ti−1 ↓ 0 and then max1≤j≤m t′j − t′j−1 ↓ 0 afterwards,

as this makes it possible to replace (B(ti)−B(ti−1))
2 with ti − ti−1 in the first limit

as max1≤i≤n ti − ti−1 ↓ 0 and the approximation of f ′′(B(ti−1))-values by f ′′(B(t′j−1))-

values is accurate in the second limit as max1≤j≤m t′j − t′j−1 ↓ 0 by the continuity of

f ′′(B). Finally, the third term on the right-hand side is bounded by

sup
r,s∈[0,T ], |r−s|≤ max

1≤i≤n

ti−ti−1

|f ′′(B(r))−f ′′(B(s))|

n
∑

i=1

∫ B(ti)

B(ti−1)
(B(ti)− r) dr

= sup
r,s∈[0,T ], |r−s|≤ max

1≤i≤n

ti−ti−1

|f ′′(B(r))−f ′′(B(s))|
n

∑

i=1

(B(ti)−B(ti−1))
2

2

→ 0×
t

2
.

Exercise 4. One can prove the following important generalization of Itô’s formula

Theorem 4.16 in Klebaner’s book: For an Itô process {X(t)}t∈[0,T ] all values of which

belong to an open interval I ⊆ R with probability 1 and a two times continuously

differentiable function f : I→R it holds that

df(X(t)) = f ′(X(t)) dX(t) +
1

2
f ′′(X(t)) d[X, X](t) for t∈ [0, T ].

Use this result to give a detailed proof of Theorem 5.3 in Klebaner’s book.

Solution. Let {U(t)}t∈[0,T ] be a strictly positive Itô process with probability 1. Then

we may apply the above mentioned generalized Itô formula to the function Y (t) =

log(U(t))− log(U(0)) to conclude that

dY (t) =
dU(t)

U(t)
−

1

2

d[U ](t)

U(t)2
,
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so that

U(t) d

(

log
( U(t)

U(0)

)

+
1

2

∫ t

0

d[U ](r)

U(r)2

)

= U(t) d

(

Y (t) +
1

2

∫ t

0

d[U ](r)

U(r)2

)

= dU(t).

This means that the Itô process

L(U(t)) ≡ log
( U(t)

U(0)

)

+
1

2

∫ t

0

d[U ](r)

U(r)2

has stochastic exponential U(t) and therefore is the stochastic logarithm of U(t). By

multiplying both sides of the above equation by 1/U(t) we also see that L(U(t)) obeys

the equation

dL(U(t)) =
1

U(t)
dU(t), L(U(0)) = 0.

(Note that this SDE is not of diffusion type in general.)

Exercise 5. The filtration {Ft} that features in the construction of the Itô integral

process need not necessarily be the filtration {FB
t } generated by B itself, but can

more generally be as in Remark 3.1 in Klebaner’s book. In particular, if {B1(t)}t≥0

and {B2(t)}t≥0 are independent Brownian motions, then we may employ the filtration

{Ft}t≥0 given by Ft = σ(FB1

t ,FB1

t ) for t≥ 0 to be able to simultaneuously consider Itô

integral process (and therefore also SDE) with respect to both B1 and B2.

The Nobel prize awarded Black-Scholes-Merton SDE

dX(t) = r X(t) dt + σ X(t) dB(t) for t > 0, X(0) = x0,

for future values {X(t)}t>0 of a financial asset with an uncertain rate of return might be

generalized to a model that can much more accurately model real worls financial assets,

such as e.g., stock prices as follows: With the notation from the previous paragraph,

consider the SDE (not in general of diffusion type)

dX(t) = r X(t) dt + σ(t)X(t) dB1(t) for t > 0, X(0) = x0,

where the constant so called volatility parameter σ ∈ R of the Black-Scholes-Merton

SDE has been replaced with a random volatility process {σ(t)}t≥0 that can model a

market that features a time variable uncertainty for the rate of the return. Solve this

more general SDE when the volatility process {σ(t)}t≥0 is given by the SDE

dσ(t) = −α σ(t) dt + β dB2(t) for t > 0, σ(0) = σ0,
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where α, β > 0 are positive real constants (as is r).

Solution. Identifying X as a stochastic exponential we get

X(t) = x0 exp

{

rt−
1

2

∫ t

0
σ(s)2 ds +

∫ t

0
σ(s) dB1(s)

}

for t≥ 0

(see Section 5.3 in Klebaner’s book), where σ in turn is recognized as the solution to a

Langevin type SDE

σ(t) = exp

{

−

∫ t

0
α(s) ds

}(

σ0 + β

∫ t

0
exp

{
∫ s

0
α(r) dr

}

dB2(s)

)

for t≥ 0

(see Example 5.6 and Section 5.3 in Klebaner’s book).

Exercise 6. Solve the SDE

dX(t) =

(

√

1+X(t)2 +
X(t)

2

)

dt +
√

1+X(t)2 dB(t) for t > 0, X(0) = 0.

Solution. First notice that all conditions of Theorem 5.4 in Klebaner’s book are

satisfied, so that it is clear that the SDE has a well-defined and unique solution. Now,

employing divine inspiration we readily arrive at the idea to try the transformation

Y (t) = sinh−1(X(t)). By an application of Itô’s formula Theorem 4.16 in Klebaner’s

book we then get

dY (t) =
1

√

1+X(t)2
dX(t)−

X(t)

2 (1+X(t)2)3/2
d[X, X](t)

= dt +
X(t)

2
√

1+X(t)2
dt + dB(t)−

X(t)

2
√

1+X(t)2
dt

= dt + dB(t),

with the obvious solution Y (t) = t + B(t) [remembering that Y (0) = 0]. Hence the

solution to the SDE must be X(t) = sinh(t+B(t)). That this process X really solves

the SDE is also easy to check by means of direct calculations using Itô’s formula Theorem

4.18 in Klebaner’s book together with the hyperbolic unit formula.
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