
TMS 165/MSA350 Stochastic Calculus

Solved Exercises for Chapters 5-6 and 10 in Klebaner’s book

Througout this exercise session B = {B(t)}t≥0 denotes Brownian motion.

Exercise 1. Show that

X(t) = e−αt

(

σ√
2α

(

B(e2αt)−B(1)
)

+ x0

)

for t≥ 0

is an Ornstein-Uhlenbeck process in the sense that it got the same distributional prop-

erties (finite dimensional distributions) as the solution

{X(t)}t≥0 =

{

e−αt

(

x0 + σ

∫ t

0
eαr dB(r)

)}

t≥0

to the Langevin SDE

dX(t) = −α X(t) dt + σ dB(t) for t > 0, X(0) = x0,

where α, σ > 0 and x0 ∈R are constants.

Solution. As both the above X processes are Gaussian they have the same finite

dimensional distributions if their mean and covariance functions agree. Here we clearly

have E{X(t)} = e−αtx0 for t≥ 0 for both the X processes. Further, we have

Cov{X(s), X(t)} =
σ2

2α
e−α(s+t) Cov

{

B(e2αs)−B(1), B(e2αt)−B(1)
}

=
σ2

2α
e−α(s+t)

(

e2α min{s,t}−1−1+1
)

=
σ2

2α

(

e−α|s−t|− e−α(s+t)
)

for s, t≥ 0

for the first X process, while Theorem 4.11 in Klebaner’s book shows that

Cov{X(s), X(t)} = σ2 e−α(s+t)

∫ min{s,t}

0
e2αr dr =

σ2

2α

(

e−α|s−t|− e−α(s+t)
)

for s, t≥ 0 for the second X process.

Exercise 2. Use the expression for an Ornstein Uhlenbeck process expressed in terms

of B from Exercise 1 to find the transition density function for the solution to the

Langevin SDE (the Ornstein Uhlenbeck process).
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Solution. We have

X(t+s) = e−α(t+s)

(

σ√
2α

(

B(e2α(t+s))−B(1)
)

+ x0

)

= e−α(t+s)x0 +
σ√
2α

e−α(t+s)
(

(

B(e2α(t+s))−B(e2αs)
)

+
(

B(e2αs)−B(1)
)

)

=
σ√
2α

e−α(t+s)
(

B(e2α(t+s))−B(e2αs)
)

+ e−αtX(s),

where
σ√
2α

e−α(t+s)
(

B(e2α(t+s))−B(e2αs)
)

is an N
(

0, (σ2/(2α)) (1−e−2αt)
)

-distributed random variable independent of {X(r)}r≤s.

It follows that (X(t+s)|X(s)=x) is N
(

e−αtx, (σ2/(2α)) (1−e−2αt)
)

-distributed, so that

p(y, t+s, x, s) =
d

dy
P (y, t+s, x, s) =

√
α

√

π (1− e−2αt) σ
exp

{

−α (y−x e−αt)2

σ2 (1− e−2αt)

}

for t+s > s≥ 0 and x, y ∈R.

Exercise 3. Solve the Stratanovich SDE

dX(t) = −α dt + σ X(t) ∂B(t) for t > 0, X(0) = x0,

where α, σ > 0 and x0 ∈R are constants.

Solution. By Theorem 5.20 in Klebaner’s book the above SDE is equivalent to the Itô

SDE

dX(t) =
(

1
2 σ2 X(t) − α

)

dt + σ X(t) dB(t) for t > 0, X(0) = x0.

This in turn is a rather simple form of the linear SDE treated in Section 5.3 in Klebaner’s

book, with a solution given by

X(t) = U(t)

(

x0 − α

∫ t

0

ds

U(s)

)

where U(t) = eσB(t),

which is to say that

X(t) = x0 eσB(t) − α eσB(t)

∫ t

0
e−σB(s) ds for t≥ 0.

Exercise 4. The CKLS (Chan-Koralyi-Longstaff-Sanders) SDE is given by

dX(t) = (α+β X(t)) dt + σ X(t)γ dB(t) for t > 0, X(0) = x0,
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where α, σ, γ, x0 > 0 and β ∈ R are constants. This SDE is used in contemporary

mathematical finance research as a model for, e.g., interest rates and/or deseasonalized

eletricity prices, and is famous for being very hard to do inference for and very hard to

simulate when γ > 1. Determine the stationary distribution for this SDE when it exists.

Solution. First note that the fact that α, x0 > 0 ensures that the solution is strictly

positive when it exists. From Equation 6.69 in Klebaner’s book we further see that the

stationary probability density function is given by

π(x) =
1

C x2γ
exp

{
∫ x

1

2 (α+β y)

σ2 y2γ
dy

}

for x > 0,

whenever this function can be normalized to become a density, that is, whenever

C =

∫ ∞

0

1

x2γ
exp

{
∫ x

1

2 (α+β y)

σ2 y2γ
dy

}

dx < ∞.

The issue whether C is finite or not in turn clearly boils down to check the integrability

properties of the function

f(x) =
1

x2γ
exp

{
∫ x

1

2 (α+β y)

σ2 y2γ
dy

}

as x ↓ 0 and as x ↑∞. Now, as x ↓ 0 we see that

f(x) ∼























C1 x−2γ for γ ∈ (0, 1/2),

C2 x2α/σ2−1 for γ = 1/2,

C3 x−2γ exp{−(2α/(σ2(2γ−1)))x−(2γ−1)} for γ > 1/2,

where C1, C2, C3 > 0 are constants. This is to say that we always have the integrability

required as x ↓ 0. When x ↑∞ we further see that

f(x) ∼



















































C4 x−2γ for γ > 1,

C5 x−2+2β/σ2

for γ = 1,

C6 x−2γ exp{(β/(σ2(1−γ)))x2−2γ} for γ ∈ (1/2, 1),

C7 x2α/σ2−1 exp{(2β/σ2)x} for γ = 1/2,

C8 x−2γ exp{(β/(σ2(1−γ)))x2−2γ +(2α/(σ2(1−2γ)))x1−2γ} for γ ∈ (0, 1/2),

where C4, . . . , C8 > 0 are constants. This is to say that we have the integrability required

when

γ > 1 and γ = 1, 2β < σ2 and γ ∈ (1/2, 1), β ≤ 0 and γ ∈ (0, 1/2], β < 0.
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Exercise 5. Exercise 6.10 in Klebaner’s book.

Solution. See the solution at the end of Klebaner’s book.

Exercise 6. Let X be a standard normal distributed random variable. Show how

X can be made to have any given probability density function f : R → [0,∞) by

means of a change of probability measure. Also, if X has probability density function

f : R → [0,∞), is it possible to make X have standard normal distributed by a change

of probability measure?

Solution. Clearly X has probability density function f under the probability measure

Q(A) =

∫

A
f(X)

√
2π eX2/2 dP for A∈F ,

as this gives

Q{X ∈B} = EQ

{

I{X∈B}

}

= EP

{

I{X∈B} f(X)
√

2π eX2/2
}

=

∫

R

IB(x) f(x)
√

2π ex2/2 1√
2π

e−x2/2 dx

=

∫

B
f(x) dx for B ⊆R.

If X instead has a strictly positive probability density function f : R→ (0,∞) from the

beginning, then X is standard normal distributed under the probability measure

Q(A) =

∫

A

1√
2π

e−X2/2 1

f(X)
dP for A∈F ,

as this gives

Q{X ∈B} = EQ

{

I{X∈B}

}

= EP

{

I{X∈B}
1√
2π

e−X2/2 1

f(X)

}

=

∫

R

IB(x)
1√
2π

e−x2/2 1

f(x)
f(x) dx

=

∫

B

1√
2π

e−x2/2 dx for B ⊆R.

If f is not strictly positive, then it is not possible to make X standard normal distributed

by means of this approach, as we then have
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Q{Ω} = EQ{1}

= EP

{

1√
2π

e−X2/2 1

f(X)

}

=

∫

{x∈R:f(x)>0}

1√
2π

e−x2/2 1

f(x)
f(x) dx

=

∫

{x∈R:f(x)>0}

1√
2π

e−x2/2 dx

< 1,

so that Q is no longer a probability measure.
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