TMS 165/MSA350 Stochastic Calculus
Solved Exercises for Chapters 5-6 and 10 in Klebaner’s book

Througout this exercise session B = {B(t) }+>0 denotes Brownian motion.

Exercise 1. Show that

X(t) = et <\/;E (B(e*) — B(1)) + x0> for ¢ >0

is an Ornstein-Uhlenbeck process in the sense that it got the same distributional prop-

erties (finite dimensional distributions) as the solution

{X(t)}im0 = {e_at <£L'0 + a/otear dB(T)> }tZO

to the Langevin SDE
dX(t) = —aX(t)dt +odB(t) for t>0, X(0)=xo,

where o, 0 > 0 and zp € R are constants.

Solution. As both the above X processes are Gaussian they have the same finite
dimensional distributions if their mean and covariance functions agree. Here we clearly

have E{X (t)} = e~ *'x( for ¢t > 0 for both the X processes. Further, we have

o2

Cov{X(s), X(t)} = o et Cov{ B(e**) — B(1), B(e**) — B(1)}
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for the first X process, while Theorem 4.11 in Klebaner’s book shows that
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Cov{X(s),X(t)} = o* eo‘(”t)/
0
for s,t > 0 for the second X process.

Exercise 2. Use the expression for an Ornstein Uhlenbeck process expressed in terms
of B from Exercise 1 to find the transition density function for the solution to the

Langevin SDE (the Ornstein Uhlenbeck process).



Solution. We have
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_ e_a(t+s)$0 + \/inae—a(t—l-s) ((B(e2a(t+s)) _B(e2a3)) + (B(QQCMS) —B(l)))

_ — e—a(t+s) (B(e%c(t-i-s)) . B(e2as)) + e_atX(S),

X(t+s) = e (t+) ( (B(e** )~ B(1)) + z0>

where

U2a e—a(t-i—s) (B(e2o¢(t+s)) _ B(GQas))

is an N(0, (¢%/(2a)) (1—e2°*))-distributed random variable independent of {X (r)},<s.

It follows that (X (t+s)|X (s)=2z) is N(e"*'z, (6?/(2a)) (1—e~2*"))-distributed, so that
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t+s,x,8) = — Py, t+s,x,8) =
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for t4+s>s>0 and z,y € R.
Exercise 3. Solve the Stratanovich SDE
dX(t) = —adt+ o X (t)0B(t) for t>0, X(0)=ux,

where a,0 >0 and zg € R are constants.

Solution. By Theorem 5.20 in Klebaner’s book the above SDE is equivalent to the It6
SDE
dX(t) = (30°X(t) —a)dt+ o X(t)dB(t) for t>0, X(0)=uxo.

This in turn is a rather simple form of the linear SDE treated in Section 5.3 in Klebaner’s

book, with a solution given by

X(t) = U() <x0 _a /0 t &;) where U(t) = e7B0),

which is to say that

t
X(t) = xo "B _ qe7BO) / e 7B ds  for t>0.
0

Exercise 4. The CKLS (Chan-Koralyi-Longstaff-Sanders) SDE is given by

dX(t) = (a+B X)) dt + o X(t)7dB(t) for t>0, X(0)= o,



where a,0,7v,29 > 0 and § € R are constants. This SDE is used in contemporary
mathematical finance research as a model for, e.g., interest rates and/or deseasonalized
eletricity prices, and is famous for being very hard to do inference for and very hard to

simulate when v > 1. Determine the stationary distribution for this SDE when it exists.

Solution. First note that the fact that o,y > 0 ensures that the solution is strictly
positive when it exists. From Equation 6.69 in Klebaner’s book we further see that the

stationary probability density function is given by

1 X
exp{/ 2(C’é—i_ﬁy)dy} for >0,
1

71_(1') = 70 x?"/ 02 y2’y

whenever this function can be normalized to become a density, that is, whenever

* 1 2
C = exp{/ (a—i_ﬂy)dy}dx<oo.
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The issue whether C' is finite or not in turn clearly boils down to check the integrability

properties of the function
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as x | 0 and as = T oco. Now, as x | 0 we see that
Crz=2 for v€(0,1/2),
f(x) ~ Cyz20/o°—1 for y=1/2,
Cz =2 exp{—(20/(c%(2y—1)))z= =D} for v>1/2,

where C1, Cy, C3 > 0 are constants. This is to say that we always have the integrability

required as z | 0. When z T oo we further see that

Cyx=27 for v>1,
Cy =228/ for y=1,
fx) ~ Coz~*Texp{(8/(0?(1-7)))2* 7} for v €(1/2,1),
Cr22/7° L exp{(23/0?) )} for y=1/2,
Csz=*Texp{(8/(0?(1-7)))2* 7 + (2a/(0?(1=27)))z' "7} for 7€ (0,1/2),

where Cy, ..., Cg > 0 are constants. This is to say that we have the integrability required

when

y>1 and y=1,268<0® and ~y€(1/2,1),3<0 and ~v€(0,1/2], 8<0.



Exercise 5. Exercise 6.10 in Klebaner’s book.

Solution. See the solution at the end of Klebaner’s book.

Exercise 6. Let X be a standard normal distributed random variable. Show how
X can be made to have any given probability density function f : R — [0,00) by
means of a change of probability measure. Also, if X has probability density function
f:R—10,00), is it possible to make X have standard normal distributed by a change

of probability measure?

Solution. Clearly X has probability density function f under the probability measure
Q(4) = / FX)V2r e 2dP for A€ F,
A
as this gives

Q{X € B} = Eq{/{xen} }
= EP{I{XEB} f(X) \/ﬂeXQ/Q}
_ /R Ip(x) f(z) V2 e’”Q/Z\/; =12 g
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:/f(a:)d:c for BCR.
B

If X instead has a strictly positive probability density function f:R — (0,00) from the

beginning, then X is standard normal distributed under the probability measure
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A :/e—X /2__—_dP for A€ F,
Q( ) ANV2T f(X)

as this gives
Q{X € B} = Eq{I(xen}}
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If f is not strictly positive, then it is not possible to make X standard normal distributed

by means of this approach, as we then have



Q{Q} = Eq{1}
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so that Q is no longer a probability measure.



