TMS165/MSA350 Stochastic Calculus Part I

Written Exam Friday 13 January 20122 pm - 6 pm

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: None.
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4,21 points (70%) for grade VG and 24 points (80%) for grade 5 , respectively.

Motivations: All answers/solutions must be motivated.
Througout this exam $B=\{B(t)\}_{t \geq 0}$ is a Brownian motion. And Good Luck to you all!
Task 1. Find the quadratic variation process $\left\{\left[B^{2}, B^{2}\right](t)\right\}_{t \geq 0}$ of squared Brownian motion $\left\{B^{2}(t)\right\}_{t \geq 0}$.
(5 points)
Task 2. Give an example of a Markov process $\{X(t)\}_{t \geq 0}$ that is not a martingale.
(5 points)
Task 3. Given an Itô process $\{X(t)\}_{t \geq 0}$, let $U_{1}(t)=\mathrm{e}^{X(t)-X(0)-[X, X](t) / 2}$ for $t \geq 0$, so that U_{1} solves the stochastic exponential SDE

$$
d U(t)=U(t) d X(t) \quad \text { for } t \geq 0, \quad U(0)=1
$$

Show that for any other solution $\left\{U_{2}(t)\right\}_{t \geq 0}$ to that SDE we must have $U_{2}(t)=U_{1}(t)$ for $t \geq 0$, for example, by means of proving that $d\left(U_{2}(t) / U_{1}(t)\right)=0$.
(5 points)
Task 4. Given some constants $\mu, \sigma \in \mathbb{R}$, consider the SDE

$$
d X(t)=\mu d t+\sigma X(t) d B(t) \quad \text { for } t \geq 0
$$

Find $\mathbf{E}\{X(t)\}$ and $\mathbf{E}\left\{X(t)^{2}\right\}$ for the solution $\{X(t)\}_{t \geq 0}$ when $X(0)=0$.
(5 points)
Task 5. Does the SDE in Task 4 have a stationary distribution? If the answer is yes, find that stationary distribution - if the answer is no, explain why not.

Task 6. Find the Milstein method for numerical solution of the SDE

$$
d X(t)=\left(\sqrt{1+X(t)^{2}}+\frac{X(t)}{2}\right) d t+\sqrt{1+X(t)^{2}} d B(t) \quad \text { for } t \in[0, T], \quad X(0)=0
$$

TMS165/MSA350 Stochastic Calculus Part I

Solutions to Written Exam Friday 13 January 2012

Task 1. As $d\left(B(t)^{2}\right)=2 B(t) d B(t)+d t$ by Itô's formula, basic rules for quadratic variations and quadratic covariations give $\left[B(t)^{2}, B(t)^{2}\right]=\left[\int_{0}^{t} 2 B d B+t, \int_{0}^{t} 2 B d B+t\right]=$ $\left[\int_{0}^{t} 2 B d B, \int_{0}^{t} 2 B d B\right]=\int_{0}^{t} 4 B(s)^{2} d s$.

Task 2. For example, any solution $\{X(t)\}_{t \geq 0}$ to an SDE $d X(t)=\mu(X(t), t) d t+$ $\sigma(X(t), t) d B(t)$ with a non-zero drift coefficient $\mu(x, t)$.

Task 3. By Itô's formula we have $d\left(U_{2}(t) / U_{1}(t)\right)=d U_{2}(t) / U_{1}(t)-U_{2}(t) d U_{1}(t) / U_{1}(t)^{2}-$ $d U_{2}(t) d U_{1}(t) / U_{1}(t)^{2}+U_{2}(t) U_{1}(t)^{2} / U_{1}(t)^{3}=U_{2}(t) d X(t) / U_{1}(t)-U_{2}(t) U_{1}(t) d X(t) / U_{1}(t)^{2}$ $-U_{2}(t) U_{1}(t) d X(t)^{2} / U_{1}(t)^{2}+U_{2}(t) U_{1}(t)^{2} d X(t)^{2} / U_{1}(t)^{3}=0$.

Task 4. We have $\mathbf{E}\{X(t)\}=\mathbf{E}\left\{\mu t+\int_{0}^{t} \sigma X(s) d B(s)\right\}=\mu t$ and $\mathbf{E}\left\{X(t)^{2}\right\}=(\mu t)^{2}+$ $2(\mu t) \mathbf{E}\left\{\int_{0}^{t} \sigma X(s) d B(s)\right\}+\mathbf{E}\left\{\left(\int_{0}^{t} \sigma X(s) d B(s)\right)^{2}\right\}=(\mu t)^{2}+\sigma^{2} \int_{0}^{t} \mathbf{E}\left\{X(s)^{2}\right\} d s$, giving $\frac{d}{d t} \mathbf{E}\left\{X(t)^{2}\right\}=2 \mu^{2} t+\sigma^{2} \mathbf{E}\left\{X(t)^{2}\right\}$ so that (by solving this ODE) $\mathbf{E}\left\{X(t)^{2}\right\}=$ $\int_{0}^{t} 2 \mu^{2} s \mathrm{e}^{\sigma^{2}(t-s)} d s=2 \mu^{2}\left(\mathrm{e}^{\sigma^{2} t}-\sigma^{2} t-1\right) / \sigma^{4}$.

Task 5. For $\mu=0$ we see that the stationary distribution is the constant value zero. For $\mu>0$ the stationary distribution has probability density function $\pi(x)$ given by Equation 6.69 in Klebaner's book as $\pi(x)=C \exp \left\{\int_{\infty}^{x} 2 \mu(y) / \sigma(y)^{2} d y\right\} / \sigma^{2}(x)=$ $C \mathrm{e}^{-2 \mu /\left(\sigma^{2} x\right)} /\left(\sigma^{2} x^{2}\right)=2 \mu \mathrm{e}^{-2 \mu /\left(\sigma^{2} x\right)} /\left(\sigma^{2} x^{2}\right)$ for $x>0$ and $\pi(x)=0$ otherwise, while similary for $\mu<0$ we have $\pi(x)=2 \mu \mathrm{e}^{-2 \mu /\left(\sigma^{2} x\right)} /\left(\sigma^{2} x^{2}\right)$ for $x<0$ and $\pi(x)=0$ otherwise.

Task 6. According to Stig's lecture notes the Milstein approximative numerical solution of the SDE is given recursively by
$X\left(t_{n+1}\right)=X\left(t_{n}\right)+\mu\left(X\left(t_{n}\right)\right) \Delta t_{n}+\sigma\left(X\left(t_{n}\right)\right) \Delta B_{n}+\frac{\sigma\left(X\left(t_{n}\right)\right) \sigma^{\prime}\left(X\left(t_{n}\right)\right)}{2}\left(\left(\Delta B_{n}\right)^{2}-\Delta t_{n}\right)$
for $n=0, \ldots, N-1$, where $0=t_{0}<t_{1}<\ldots<t_{N}=T, \Delta t_{n}=t_{n+1}-t_{n}, \Delta B_{n}=$ $B\left(t_{n+1}\right)-B\left(t_{n}\right), \mu(x)=\sqrt{1+x^{2}}+x / 2$ and $\sigma(x)=\sqrt{1+x^{2}}$.

