TMS165/MSA350 Stochastic Calculus

Written Exam Monday 4 January 2016 2–6 pm

TEACHER AND JOUR: Patrik Albin, telephone 0706945709.

AIDS: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).

GRADES: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Througout this exam $B = \{B(t)\}_{t \ge 0}$ denotes a Brownian motion.

Task 1. Given constants c, T > 0, show that -B(t), B(t+T) - B(T), $c B(t/c^2)$ and t B(1/t) are also Brownian motions. (5 points)

Task 2. Let X(t) satisfy the SDE

$$dX(t) = X(t)^2 dt + X(t) dB(t), \quad X(0) = 1.$$

Show that X(t) also satisfies the equation

$$X(t) = \exp\left\{\int_0^t (X(s) - 1/2) \, ds + B(t)\right\}.$$
 (5 points)

Task 3. As you know, an Ornstein-Uhlenbeck process is the solution X(t) to the SDE $dX(t) = -\mu X(t) dt + \sigma dB(t)$ for t > 0,

where $\mu, \sigma > 0$ are parameters. Derive an expression for the transition density function $p(t, x, y) = \frac{d}{dy} \mathbf{P}\{X(t+s) \le y | X(s) = x\}$ for 0 < s < t, for this process, for example, making use of the fact that $X(t+s) = e^{-\mu t}X(s) + \sigma \int_{s}^{t+s} e^{\mu(r-t-s)} dB(r)$. (5 points)

Task 4. Let a time homogeneous diffusion process X(t) be started according to its stationary probability density function π (assuming that it exists), so that $f_{X(0)}(x) = \pi(x)$. Explain why X(t) is a stationary process, that is, why $(X(t_1+h), \ldots, X(t_n+h))$ has the same probability density function as $(X(t_1), \ldots, X(t_n))$ for all choices of $0 < t_1 < \ldots < t_n, h \ge 0$ and $n \in \mathbb{N}$. (5 points)

Task 5. Let X be a unit mean exponentially distributed random variable under the probability measure **P**. Which other continuous probability density functions can X be given by means of a change of probability measure? (5 points)

Task 6. Describe how Itô-Taylor expansion works for a time homogeneous SDE.

(5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam Monday 4 January

Task 1. As the four processes listed are all zero-mean Gaussian it is enough to check that they all have the same covariance function $\min\{s, t\}$ as has Brownian motion. That this is so in turn follows from elementary calculations.

Task 2. This is Exercise 5.6 in Klebaner's book: See his solution.

Task 3. Make use of the simple fact that (X(t+s)|X(s)=x) is $N(e^{-\mu t}x, \sigma^2(1-e^{-2\mu t})/(2\mu))$ -distributed to conclude that

$$p(t, x, y) = \frac{\sqrt{\mu}}{\sqrt{\pi} \, \sigma \sqrt{1 - e^{-2\mu t}}} \exp\left\{-\frac{(y - e^{-\mu t}x)^2}{\sigma^2 (1 - e^{-2\mu t})/\mu}\right\}.$$

Task 4. According to the lecture on applications the joint probability density function of $(X(t_0), X(t_1), \ldots, X(t_n))$ for $0 = t_0 < t_1 < \ldots < t_n$ is given by

$$f_{X(t_0),X(t_1),\dots,X(t_n)}(x_0,x_1,\dots,x_n) = \pi(x_0) \prod_{i=1}^n p(t_i - t_{i-1},x_{i-1},x_i)$$

when the process is started according to π . By integrating with respect to x_0 and making use of the defining fact that $\int p(t, x_0, x_1) \pi(x_0) dx_0 = \pi(x_1)$ it follows that the joint probability density function of $(X(t_1), \ldots, X(t_n))$ for $0 < t_1 < \ldots < t_n$ is given by

$$f_{X(t_1),\dots,X(t_n)}(x_1,\dots,x_n) = \pi(x_1) \prod_{i=2}^n p(t_i - t_{i-1}, x_{i-1}, x_i).$$

But this expression remains unaltered if t_1, \ldots, t_n is replaced with t_1+h, \ldots, t_n+h . Or, in fact, it is enough to note that $f_{X(t_0+h),X(t_1+h),\ldots,X(t_n+h)}(x_0, x_1, \ldots, x_n)$ also do not depend on $h \ge 0$.

Task 5. For any probability density function f(x), $x \ge 0$, on the positive real axis we can introduce a probability measure $\mathbf{Q}(A) = \int_A \Lambda(X) d\mathbf{P}$ where $\Lambda(X) = f(X) e^X$, because $\Lambda(X)$ is non-negative with $\mathbf{Q}(\Omega) = \int_\Omega \Lambda(X) d\mathbf{P} = \mathbf{E}_{\mathbf{P}} \{\Lambda(X)\} = \int_0^\infty f(x) e^x$ $e^{-x} dx = \int_0^\infty f(x) dx = 1$. And then X will have density f under \mathbf{Q} as $\mathbf{E}_{\mathbf{Q}} \{e^{i\omega X}\} =$ $\mathbf{E}_{\mathbf{P}} \{\Lambda(X) e^{i\omega X}\} = \int_0^\infty f(x) e^x e^{i\omega x} e^{-x} dx = \int_0^\infty e^{i\omega x} f(x) dx$.

Task 6. See page 12 in Stig's lecture notes.