TMS165/MSA350 Stochastic Calculus

Written Exam Friday 19 August 2016 8.30-12.30 am

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.
Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes Brownian motion.
Task 1. Express the value of the Itô integral $\int_{0}^{t} B(s)^{n-1} d B(s)$ in terms of just $B(t)$ and ordinary (non-Itô) integrals for an integer $n \geq 2$. (5 points)

Task 2. Prove that Itô integral processes of simple adapted processes are martingales.

Task 3. Is it true that the stochastic logaritm of the stochastic exponential of an Itô process $X(t)$ equals $X(t)$? (5 points)

Task 4. The stochastic exponential $X(t)$ of Brownian motion with drift is given by

$$
d X(t)=\mu X(t) d t+\sigma X(t) d B(t), \quad X(0)=1,
$$

for some constants $\mu \in \mathbb{R}$ and $\sigma>0$. Does this diffusion process $X(t)$ have a stationary distribution? (5 points)

Task 5. Let $X(t)=B(t)+\sin (t)$. Find a probability measure \mathbf{Q} that makes $X(t)$ a Brownian motion. (5 points)

Task 6. Derive Milstein's method for strong numerical solution of a time homogeneous SDE. (5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 19 August 2016

Task 1. As Itô's formula gives $d\left(B(t)^{n}\right)=n B(t)^{n-1} d B(t)+\frac{1}{2} n(n-1) B(t)^{n-2} d t$, we get $\int_{0}^{t} B(s)^{n-1} d B(s)=\frac{1}{n} B(t)^{n}-\frac{n-1}{2} \int_{0}^{t} B(s)^{n-2} d s$.

Task 2. This is a solved exercise in the exercise material of the course: See the solution there.

Task 3. As $Y(t)=\mathcal{E}(X)(t)$ is given by $d Y(t)=Y(t) d X(t)$ and $Y(0)=1$, while $Z(t)=\mathcal{L}(Y)(t)$ is given by $d Y(t)=Y(t) d Z(t)$ and $Z(0)=0$, we see that $d Y(t)=$ $Y(t) d X(t)=Y(t) d Z(t)$, so that $d X(t)=d Z(t)$ (as $Y(t)$ is non-zero), giving $X(t)-$ $X(0)=Z(t)-Z(0)=Z(t)=\mathcal{L}(\mathcal{E}(X))(t)$.

Task 4. Paying respect to that $X(t)$ is a process with values in the interval $(0, \infty)$, for $X(t)$ to have a stationary distribution it is necessary that

$$
\int_{0}^{\infty} \frac{1}{\sigma(x)^{2}} \exp \left\{\int_{1}^{x} \frac{2 \mu(y)}{\sigma(y)^{2}} d y\right\} d x<\infty
$$

where $\mu(x)=\mu x$ and $\sigma(x)=\sigma x$. However, the intergrand of the above integral evaluates to

$$
\frac{1}{\sigma^{2} x^{2}} \exp \left\{\int_{1}^{x} \frac{2 \mu}{\sigma^{2} y} d y\right\}=\frac{x^{2 \mu / \sigma^{2}}}{\sigma^{2} x^{2}}
$$

which is not integrable over $(0, \infty)$ for any choice of $\mu \in \mathbb{R}$ and $\sigma>0$.
Task 5. This is Exercise 10.4 in Klebaner's book: See his solution.
Task 6. See Section 2.4 in Stig's lecture notes.

