TMS165/MSA350 Stochastic Calculus

Written Exam Friday 19 August 2016 8.30–12.30 am

TEACHER AND JOUR: Patrik Albin, telephone 0706945709.

AIDS: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).

GRADES: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Througout this exam $B = \{B(t)\}_{t \ge 0}$ denotes Brownian motion.

Task 1. Express the value of the Itô integral $\int_0^t B(s)^{n-1} dB(s)$ in terms of just B(t) and ordinary (non-Itô) integrals for an integer $n \ge 2$. (5 points)

 Task 2. Prove that Itô integral processes of simple adapted processes are martingales.

 (5 points)

Task 3. Is it true that the stochastic logaritm of the stochastic exponential of an Itô process X(t) equals X(t)? (5 points)

Task 4. The stochastic exponential X(t) of Brownian motion with drift is given by

$$dX(t) = \mu X(t) dt + \sigma X(t) dB(t), \quad X(0) = 1,$$

for some constants $\mu \in \mathbb{R}$ and $\sigma > 0$. Does this diffusion process X(t) have a stationary distribution? (5 points)

Task 5. Let $X(t) = B(t) + \sin(t)$. Find a probability measure **Q** that makes X(t) a Brownian motion. (5 points)

Task 6. Derive Milstein's method for strong numerical solution of a time homogeneousSDE. (5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 19 August 2016

Task 1. As Itô's formula gives $d(B(t)^n) = n B(t)^{n-1} dB(t) + \frac{1}{2} n (n-1) B(t)^{n-2} dt$, we get $\int_0^t B(s)^{n-1} dB(s) = \frac{1}{n} B(t)^n - \frac{n-1}{2} \int_0^t B(s)^{n-2} ds$.

Task 2. This is a solved exercise in the exercise material of the course: See the solution there.

Task 3. As $Y(t) = \mathcal{E}(X)(t)$ is given by dY(t) = Y(t) dX(t) and Y(0) = 1, while $Z(t) = \mathcal{L}(Y)(t)$ is given by dY(t) = Y(t) dZ(t) and Z(0) = 0, we see that dY(t) = Y(t) dX(t) = Y(t) dZ(t), so that dX(t) = dZ(t) (as Y(t) is non-zero), giving $X(t) - X(0) = Z(t) - Z(0) = Z(t) = \mathcal{L}(\mathcal{E}(X))(t)$.

Task 4. Paying respect to that X(t) is a process with values in the interval $(0, \infty)$, for X(t) to have a stationary distribution it is necessary that

$$\int_0^\infty \frac{1}{\sigma(x)^2} \, \exp\left\{\int_1^x \frac{2\,\mu(y)}{\sigma(y)^2} \, dy\right\} dx < \infty,$$

where $\mu(x) = \mu x$ and $\sigma(x) = \sigma x$. However, the integrand of the above integral evaluates to

$$\frac{1}{\sigma^2 x^2} \exp\left\{\int_1^x \frac{2\mu}{\sigma^2 y} dy\right\} = \frac{x^{2\mu/\sigma^2}}{\sigma^2 x^2},$$

which is not integrable over $(0, \infty)$ for any choice of $\mu \in \mathbb{R}$ and $\sigma > 0$.

Task 5. This is Exercise 10.4 in Klebaner's book: See his solution.

Task 6. See Section 2.4 in Stig's lecture notes.