TMS165/MSA350 Stochastic Calculus

Written Exam Tuesday 25 October 2016 8.30–12.30 am

TEACHER AND JOUR: Patrik Albin, telephone 0706945709.

AIDS: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).

GRADES: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Througout this exam $B = \{B(t)\}_{t \ge 0}$ denotes a Brownian motion.

Task 1. Solve the Stratonovich SDE

$$dX(t) = X(t) \partial B(t) \quad \text{for } t \ge 0, \quad X(0) = 1.$$
(5 points)

Task 2. Let $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$ denote the standard normal cummulative distribution function. Show that $\{\Phi(B(t)/\sqrt{T-t})\}_{t\in[0,T)}$ is a martingale. (5 points)

Task 3. Find the solution f(x, t) to the PDE

$$\frac{\partial f(x,t)}{\partial t} + \frac{1}{2} \frac{\partial^2 f(x,t)}{\partial x^2} - x \frac{\partial f(x,t)}{\partial x} = 0 \quad \text{for } t \in [0,T], \quad f(x,T) = x^2.$$
 (5 points)

Task 4. Let X(t) be the solution to a time homogeneous SDE

$$dX(t) = \mu(X(t)) dt + \sigma(X(t)) dB(t)$$
 for $t \ge 0$, $X(0) = x_0$.

Find coefficients $\mu, \sigma : \mathbb{R} \to \mathbb{R}$ such that $\{X(t)^2 - \int_0^t X(s)^2 ds - t\}_{t \ge 0}$ is a martingale. (All Itô integrals may be assumed to be martingales.) (5 points)

Task 5. Let X be a random variable that is $N(\mu_1, \sigma_1^2)$ - and $N(\mu_2, \sigma_2^2)$ -distributed under two equivalent probability measures \mathbf{P}_1 and \mathbf{P}_2 , respectively. Show that $\mathbf{P} = (\mathbf{P}_1 + \mathbf{P}_2)/2$ [i.e., $\mathbf{P}(A) = \mathbf{P}_1(A)/2 + \mathbf{P}_2(A)/2$ for all A] is a probability measure and that **P** is equivalent to both \mathbf{P}_1 and \mathbf{P}_2 . Also, find the probability $\mathbf{P}\{X \leq 0\}$. (5 points)

Task 6. Let X(t) be the solution to an SDE

$$dX(t) = \mu(X(t), t) dt + \sigma(X(t), t) dB(t) \text{ for } t \in [0, T], \quad X(0) = x_0,$$

with sufficiently smooth coefficients $\mu, \sigma : \mathbb{R} \times [0, T] \to \mathbb{R}$ and let $g : \mathbb{R} \to \mathbb{R}$ be a sufficiently smooth function. Describe how to obtain a numerical approximation of the expected value $\mathbf{E}\{g(X(T))\}$ and also what numerical errors that will occur for this approximation and how big they will be. (5 points)

TMS165/MSA350 Stochastic Calculus Solutions to Written Exam 25 October 2016

Task 1. According to Theorem 5.20 in Klebaner X(t) satisfies the Itô SDE

$$dX(t) = \frac{1}{2} X(t) dt + X(t) dB(t) \quad \text{for } t > 0, \quad X(0) = 1,$$

so that X(t) is the stochastic exponential of $\frac{1}{2}t + B(t)$ which in turn simply is $e^{B(t)}$ (see e.g., Theorem 5.2 in Klebaner). Hence we have $X(t) = e^{B(t)}$.

Task 2. We use Itô's formula from Theorem 4.18 in Klebaner according to which for a smooth function f(x, t) and a solution X(t) to an SDE

$$dX(t) = \mu(X(t), t) dt + \sigma(X(t), t) dB(t) \quad \text{for } t \ge 0, \quad X(0) = x_0,$$

we have

$$df(X(t),t) = f'_x(X(t),t) \, dX(t) + \frac{1}{2} \, \sigma(X(t),t)^2 \, f''_{xx}(X(t),t) \, dt + f'_t(X(t),t) \, dt.$$

In our case $f(x,t) = \Phi(x/\sqrt{T-t})$ and X(t) = B(t), so that $f'_x(x,t) = \phi(x/\sqrt{T-t})/\sqrt{T-t}$, $f''_{xx}(x,t) = \phi'(x/\sqrt{T-t})/(T-t) = -x \phi(x/\sqrt{T-t})/(T-t)^{3/2}$ and $f'_t(x,t) = \frac{1}{2} x \phi(x/\sqrt{T-t})/(T-t)^{3/2}$ giving $d(\Phi(B(t)/\sqrt{T-t})) = \phi(B(t)/\sqrt{T-t})/\sqrt{T-t} dB(t)$ (as $\mu(x,t) = 0$ and $\sigma(x,t) = 1$). And so $\Phi(B(t)/\sqrt{T-t}) = \int_0^t \phi(B(s)/\sqrt{T-s})/\sqrt{T-s} dB(s)$ is a martingale (as $|\phi(x)| \le 1$ is a bounded function).

Task 3. By Theorem 6.8 in Klebaner we have $f(x,t) = \mathbf{E}\{X(T)^2 | X(t) = x\}$ where X(t) solves the Langevin SDE dX(t) = -X(t) dt + dB(t). As by Example 5.6 in Klebaner $X(t) = e^{-t}(X(0) + \int_0^t e^s dB(s))$ giving $X(T) = e^{-T}(X(0) + \int_0^T e^s dB(s)) = e^{-(T-t)}X(t) + e^{-T}\int_t^T e^s dB(s)$ we get $f(x,t) = \mathbf{E}\{(e^{-(T-t)}x + e^{-T}\int_t^T e^s dB(s))^2\} = e^{-2(T-t)}x^2 + \frac{1}{2}(1 - e^{-2(T-t)})$ (where we also made use of Theorem 4.11 in Klebaner).

Task 4. We have

$$d(X(t)^{2}) = 2 X(t) dX(t) + d[X, X](t)$$

= 2 X(t) \mu(X(t)) dt + 2 X(t) \sigma(X(t)) dB(t) + \sigma(X(t))^{2} dt

making

$$X(t)^{2} - 2\int_{0}^{t} X(s)\,\mu(X(s))\,ds - \int_{0}^{t} \sigma(X(s))^{2}\,ds = 2\int_{0}^{t} X(s)\,\sigma(X(s))\,dB(s)$$

a martingale, so we can take $\mu(x) = x/2$ and $\sigma(x) = 1$.

Task 5. It is clear by inspection that $\mathbf{P} = (\mathbf{P}_1 + \mathbf{P}_2)/2$ obeys the axioms of a probability measure on page 29 in Klebaner when \mathbf{P}_1 and \mathbf{P}_2 do. Further, according to Theorem 10.4

in Klebaner $d\mathbf{P}_2/d\mathbf{P}_1 = \Lambda(X) = (\sigma_1/\sigma_2) e^{\frac{1}{2}(X-\mu_1)^2/\sigma_1^2 - \frac{1}{2}(X-\mu_2)^2/\sigma_2^2}$ so that $d\mathbf{P}/d\mathbf{P}_1 = (1 + \Lambda(X))/2$, $d\mathbf{P}/d\mathbf{P}_2 = (\Lambda(X)^{-1} + 1)/2$, $d\mathbf{P}_1/d\mathbf{P} = 2/(1 + \Lambda(X))$ and $d\mathbf{P}_2/d\mathbf{P} = 2/(\Lambda(X)^{-1} + 1)$ showing that \mathbf{P} is equivalent to both \mathbf{P}_1 and \mathbf{P}_2 . Also, clearly, $\mathbf{P}\{X \le 0\} = (\Phi(-\mu_1/\sigma_1) + \Phi(-\mu_2/\sigma_2))/2$.

Task 6. This is Section 2.3 in the lecture notes by Stig Larsson.