TMS165/MSA350 Stochastic Calculus

Written Exam Tuesday 25 October 2016 8.30-12.30 am

Teacher and Jour: Patrik Albin, telephone 0706945709.
Aids: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.
Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. Solve the Stratonovich SDE

$$
\begin{equation*}
d X(t)=X(t) \partial B(t) \quad \text { for } t \geq 0, \quad X(0)=1 . \tag{5points}
\end{equation*}
$$

Task 2. Let $\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-y^{2} / 2} d y$ denote the standard normal cummulative distribution function. Show that $\{\Phi(B(t) / \sqrt{T-t})\}_{t \in[0, T)}$ is a martingale. (5 points)

Task 3. Find the solution $f(x, t)$ to the PDE

$$
\begin{equation*}
\frac{\partial f(x, t)}{\partial t}+\frac{1}{2} \frac{\partial^{2} f(x, t)}{\partial x^{2}}-x \frac{\partial f(x, t)}{\partial x}=0 \quad \text { for } t \in[0, T], \quad f(x, T)=x^{2} \tag{5points}
\end{equation*}
$$

Task 4. Let $X(t)$ be the solution to a time homogeneous SDE

$$
d X(t)=\mu(X(t)) d t+\sigma(X(t)) d B(t) \quad \text { for } t \geq 0, \quad X(0)=x_{0} .
$$

Find coefficients $\mu, \sigma: \mathbb{R} \rightarrow \mathbb{R}$ such that $\left\{X(t)^{2}-\int_{0}^{t} X(s)^{2} d s-t\right\}_{t \geq 0}$ is a martingale. (All Itô integrals may be assumed to be martingales.) (5 points)

Task 5. Let X be a random variable that is $\mathrm{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ - and $\mathrm{N}\left(\mu_{2}, \sigma_{2}^{2}\right)$-distributed under two equivalent probability measures \mathbf{P}_{1} and \mathbf{P}_{2}, respectively. Show that $\mathbf{P}=\left(\mathbf{P}_{1}+\mathbf{P}_{2}\right) / 2$ [i.e., $\mathbf{P}(A)=\mathbf{P}_{1}(A) / 2+\mathbf{P}_{2}(A) / 2$ for all A] is a probability measure and that \mathbf{P} is equivalent to both \mathbf{P}_{1} and \mathbf{P}_{2}. Also, find the probability $\mathbf{P}\{X \leq 0\}$. (5 points)

Task 6. Let $X(t)$ be the solution to an SDE

$$
d X(t)=\mu(X(t), t) d t+\sigma(X(t), t) d B(t) \quad \text { for } t \in[0, T], \quad X(0)=x_{0},
$$

with sufficiently smooth coefficients $\mu, \sigma: \mathbb{R} \times[0, T] \rightarrow \mathbb{R}$ and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a sufficiently smooth function. Describe how to obtain a numerical approximation of the expected value $\mathbf{E}\{g(X(T))\}$ and also what numerical errors that will occur for this approximation and how big they will be.
(5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 25 October 2016

Task 1. According to Theorem 5.20 in Klebaner $X(t)$ satisfies the Itô SDE

$$
d X(t)=\frac{1}{2} X(t) d t+X(t) d B(t) \quad \text { for } t>0, \quad X(0)=1,
$$

so that $X(t)$ is the stochastic exponential of $\frac{1}{2} t+B(t)$ which in turn simply is $\mathrm{e}^{B(t)}$ (see e.g., Theorem 5.2 in Klebaner). Hence we have $X(t)=e^{B(t)}$.

Task 2. We use Itô's formula from Theorem 4.18 in Klebaner according to which for a smooth function $f(x, t)$ and a solution $X(t)$ to an SDE

$$
d X(t)=\mu(X(t), t) d t+\sigma(X(t), t) d B(t) \quad \text { for } t \geq 0, \quad X(0)=x_{0},
$$

we have

$$
d f(X(t), t)=f_{x}^{\prime}(X(t), t) d X(t)+\frac{1}{2} \sigma(X(t), t)^{2} f_{x x}^{\prime \prime \prime}(X(t), t) d t+f_{t}^{\prime}(X(t), t) d t .
$$

In our case $f(x, t)=\Phi(x / \sqrt{T-t})$ and $X(t)=B(t)$, so that $f_{x}^{\prime}(x, t)=\phi(x / \sqrt{T-t})$ $/ \sqrt{T-t}, f_{x x}^{\prime \prime}(x, t)=\phi^{\prime}(x / \sqrt{T-t}) /(T-t)=-x \phi(x / \sqrt{T-t}) /(T-t)^{3 / 2}$ and $f_{t}^{\prime}(x, t)=$ $\frac{1}{2} x \phi(x / \sqrt{T-t}) /(T-t)^{3 / 2}$ giving $d(\Phi(B(t) / \sqrt{T-t}))=\phi(B(t) / \sqrt{T-t}) / \sqrt{T-t} d B(t)$ (as $\mu(x, t)=0$ and $\sigma(x, t)=1$). And so $\Phi(B(t) / \sqrt{T-t})=\int_{0}^{t} \phi(B(s) / \sqrt{T-s}) / \sqrt{T-s}$ $d B(s)$ is a martingale (as $|\phi(x)| \leq 1$ is a bounded function).

Task 3. By Theorem 6.8 in Klebaner we have $f(x, t)=\mathbf{E}\left\{X(T)^{2} \mid X(t)=x\right\}$ where $X(t)$ solves the Langevin $\operatorname{SDE} d X(t)=-X(t) d t+d B(t)$. As by Example 5.6 in Klebaner $X(t)=\mathrm{e}^{-t}\left(X(0)+\int_{0}^{t} \mathrm{e}^{s} d B(s)\right)$ giving $X(T)=\mathrm{e}^{-T}\left(X(0)+\int_{0}^{T} \mathrm{e}^{s} d B(s)\right)=$ $\mathrm{e}^{-(T-t)} X(t)+\mathrm{e}^{-T} \int_{t}^{T} \mathrm{e}^{s} d B(s)$ we get $f(x, t)=\mathbf{E}\left\{\left(\mathrm{e}^{-(T-t)} x+\mathrm{e}^{-T} \int_{t}^{T} \mathrm{e}^{s} d B(s)\right)^{2}\right\}=$ $\mathrm{e}^{-2(T-t)} x^{2}+\frac{1}{2}\left(1-\mathrm{e}^{-2(T-t)}\right)$ (where we also made use of Theorem 4.11 in Klebaner).

Task 4. We have

$$
\begin{aligned}
d\left(X(t)^{2}\right) & =2 X(t) d X(t)+d[X, X](t) \\
& =2 X(t) \mu(X(t)) d t+2 X(t) \sigma(X(t)) d B(t)+\sigma(X(t))^{2} d t
\end{aligned}
$$

making

$$
X(t)^{2}-2 \int_{0}^{t} X(s) \mu(X(s)) d s-\int_{0}^{t} \sigma(X(s))^{2} d s=2 \int_{0}^{t} X(s) \sigma(X(s)) d B(s)
$$

a martingale, so we can take $\mu(x)=x / 2$ and $\sigma(x)=1$.
Task 5. It is clear by inspection that $\mathbf{P}=\left(\mathbf{P}_{1}+\mathbf{P}_{2}\right) / 2$ obeys the axioms of a probability measure on page 29 in Klebaner when \mathbf{P}_{1} and \mathbf{P}_{2} do. Further, according to Theorem 10.4
in Klebaner $d \mathbf{P}_{2} / d \mathbf{P}_{1}=\Lambda(X)=\left(\sigma_{1} / \sigma_{2}\right) \mathrm{e}^{\frac{1}{2}\left(X-\mu_{1}\right)^{2} / \sigma_{1}^{2}-\frac{1}{2}\left(X-\mu_{2}\right)^{2} / \sigma_{2}^{2}}$ so that $d \mathbf{P} / d \mathbf{P}_{1}=$ $(1+\Lambda(X)) / 2, d \mathbf{P} / d \mathbf{P}_{2}=\left(\Lambda(X)^{-1}+1\right) / 2, d \mathbf{P}_{1} / d \mathbf{P}=2 /(1+\Lambda(X))$ and $d \mathbf{P}_{2} / d \mathbf{P}=$ $2 /\left(\Lambda(X)^{-1}+1\right)$ showing that \mathbf{P} is equivalent to both \mathbf{P}_{1} and \mathbf{P}_{2}. Also, clearly, $\mathbf{P}\{X \leq$ $0\}=\left(\Phi\left(-\mu_{1} / \sigma_{1}\right)+\Phi\left(-\mu_{2} / \sigma_{2}\right)\right) / 2$.

Task 6. This is Section 2.3 in the lecture notes by Stig Larsson.

