TMS165/MSA350 Stochastic Calculus

Written Exam Friday 18 August 2017 8.30-12.30 am

Teacher: Patrik Albin. Jour: Tim Cardilin, telephone 0317725325.
AIDS: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5 , respectively.
Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. Find the quadratic variation process of $\cos (B(t)) \mathrm{e}^{B(t)}$. (5 points)
Task 2. If $X(t)$ is the stochastic exponential of $B(t)$, what process is then $X(t)^{3}$ the stochastic exponential of? (5 points)

Task 3. We have observed a diffusion process $\{X(t)\}_{t \in[0,10]}$ which is either Brownian motion $X(t)=B(t)$ or an Ornstein-Uhlenbeck process $d X(t)=-X(t) d t+d B(t)$. How can we use the observed data $\{X(t)\}_{t \in[0,10]}$ to determine which of the two models (/origins) for $X(t)$ is the correct one? (5 points)

Task 4. For which two times continuously differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is $\{f(B(t)$ $+t)\}_{t \geq 0}$ a time-homogeneous diffusion process with zero drift coefficient?
(5 points)
Task 5. Let $\{X(t)\}_{t \geq 0}$ be a time homogeneous diffusion process that has a stationary distribution and is started according to that stationary distribution at time $t=0$. Prove that X is a stationary process, which is to say that

$$
\mathbf{P}\left\{X\left(t_{1}+h\right) \leq x_{1}, \ldots, X\left(t_{n}+h\right) \leq x_{n}\right\}=\mathbf{P}\left\{X\left(t_{1}\right) \leq x_{1}, \ldots, X\left(t_{n}\right) \leq x_{n}\right\}
$$

for $0<t_{1}<\ldots<t_{n}, h \geq 0$ and $x_{1}, \ldots, x_{n} \in \mathbb{R}$. (5 points)
Task 6. Explain the difference between strong convergence and weak convergence of a numerical method for solution of SDE's. (5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 18 August 2017

Task 1. As $d\left(\cos (B(t)) \mathrm{e}^{B(t)}\right)=-\sin (B(t)) \mathrm{e}^{B(t)} d B(t)+\cos (B(t)) \mathrm{e}^{B(t)} d B(t)+\ldots d t$ we have $\left[\cos (B(t)) \mathrm{e}^{B(t)}, \cos (B(t)) \mathrm{e}^{B(t)}\right]=\int_{0}^{t}\left(\sin (B(s)-\cos (B(s)))^{2} \mathrm{e}^{2 B(s)} d s\right.$.

Task 2. As $d X(t)=X(t) d B(t)$ we have that $Y(t)=X(t)^{3}$ satisfies $d Y(t)=$ $d\left(X(t)^{3}\right)=3 X(t)^{2} d X(t)+3 X(t) d[X, X](t)=3 X(t)^{3} d B(t)+3 X(t)^{3} d t=Y(t)(3 d B(t)$ $+3 d t$), making $X(t)^{3}$ the stochastic exponential of $3 B(t)+3 t$.

Task 3. According to Example 10.5 and Equation 10.53 in Klebaner's book we calculate the likelihood

$$
\Lambda(X)=\exp \left\{-\int_{0}^{10} X(t) d X(t)-\frac{1}{2} \int_{0}^{10} X(t)^{2} d t\right\}
$$

If this likelihood is (significantly) bigger that 1 we conclude that $X(t)$ is an OrnrsteinUhlenbeck process while if the likelihood is (significantly) smaller that 1 we conclude that $X(t)$ is a Brownian motion.

Task 4. As $X(t)=f(B(t)+t)$ satisfies $d X(t)=f^{\prime}(B(t)+t)(d B(t)+d t)+\frac{1}{2} f^{\prime \prime}(B(t)+t) d t$ we must have $f^{\prime \prime}(x)+2 f^{\prime}(x)=0$ so that $f^{\prime}(x)+2 f(x)=C_{1}$ giving $\frac{d}{d x}\left(\mathrm{e}^{2 x} f(x)\right)=C_{1} \mathrm{e}^{2 x}$ so that $\mathrm{e}^{2 x} f(x)=\frac{1}{2} C_{1} \mathrm{e}^{2 x}+C_{2}$ and $f(x)=C_{1}+C_{2} \mathrm{e}^{-2 x}$ (for another choise of C_{1}).

Task 5. Writing $\pi(x)$ for the stationary probability density function and supposing that $X(0)$ has that density function, we have with obvious notation using Eq. 6.67 in Klebaner's book (see also Eq. 3.4 in Klebaner's book)

$$
\begin{aligned}
& \mathbf{P}\left\{X\left(t_{1}+h\right) \leq x_{1}, \ldots, X\left(t_{n}+h\right) \leq x_{n}\right\} \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{x_{1}} \ldots \int_{-\infty}^{x_{n}} \pi(x) p\left(t_{1}+h, x, y_{1}\right) p\left(t_{2}-t_{1}, y_{1}, y_{2}\right) \ldots p\left(t_{n}-t_{n-1}, y_{n-1}, y_{n}\right) d y_{n} \ldots d y_{1} d x \\
= & \int_{-\infty}^{x_{1}} \ldots \int_{-\infty}^{x_{n}} \pi\left(y_{1}\right) p\left(t_{2}-t_{1}, y_{1}, y_{2}\right) \ldots p\left(t_{n}-t_{n-1}, y_{n-1}, y_{n}\right) d y_{n} \ldots d y_{1} .
\end{aligned}
$$

As the right-hand side of this expression does not depend on $h \geq 0$ we are done.
Task 6. See the beginning of Chapter 2 in the lecture notes by Stig Larsson.

