TMS 165/MSA350 Stochastic Calculus

Solved Exercises for Chapters 5-6 and 10 in Klebaner's book

Througout this exercise session $B=\{B(t)\}_{t \geq 0}$ denotes Brownian motion.

Exercise 1. Show that

$$
X(t)=\mathrm{e}^{-\alpha t}\left(\frac{\sigma}{\sqrt{2 \alpha}}\left(B\left(\mathrm{e}^{2 \alpha t}\right)-B(1)\right)+x_{0}\right) \quad \text { for } t \geq 0
$$

is an Ornstein-Uhlenbeck process in the sense that it got the same distributional properties (finite dimensional distributions) as the solution

$$
\{X(t)\}_{t \geq 0}=\left\{\mathrm{e}^{-\alpha t}\left(x_{0}+\sigma \int_{0}^{t} \mathrm{e}^{\alpha r} d B(r)\right)\right\}_{t \geq 0}
$$

to the Langevin SDE

$$
d X(t)=-\alpha X(t) d t+\sigma d B(t) \quad \text { for } t>0, \quad X(0)=x_{0}
$$

where $\alpha, \sigma>0$ and $x_{0} \in \mathbb{R}$ are constants.
Solution. As both the above X processes are Gaussian they have the same finite dimensional distributions if their mean and covariance functions agree. Here we clearly have $\mathbf{E}\{X(t)\}=\mathrm{e}^{-\alpha t} x_{0}$ for $t \geq 0$ for both the X processes. Further, we have

$$
\begin{aligned}
\operatorname{Cov}\{X(s), X(t)\} & =\frac{\sigma^{2}}{2 \alpha} \mathrm{e}^{-\alpha(s+t)} \operatorname{Cov}\left\{B\left(\mathrm{e}^{2 \alpha s}\right)-B(1), B\left(\mathrm{e}^{2 \alpha t}\right)-B(1)\right\} \\
& =\frac{\sigma^{2}}{2 \alpha} \mathrm{e}^{-\alpha(s+t)}\left(\mathrm{e}^{2 \alpha \min \{s, t\}}-1-1+1\right) \\
& =\frac{\sigma^{2}}{2 \alpha}\left(\mathrm{e}^{-\alpha|s-t|}-\mathrm{e}^{-\alpha(s+t)}\right) \text { for } s, t \geq 0
\end{aligned}
$$

for the first X process, while Theorem 4.11 in Klebaner's book shows that

$$
\operatorname{Cov}\{X(s), X(t)\}=\sigma^{2} \mathrm{e}^{-\alpha(s+t)} \int_{0}^{\min \{s, t\}} \mathrm{e}^{2 \alpha r} d r=\frac{\sigma^{2}}{2 \alpha}\left(\mathrm{e}^{-\alpha|s-t|}-\mathrm{e}^{-\alpha(s+t)}\right)
$$

for $s, t \geq 0$ for the second X process.

Exercise 2. Use the expression for an Ornstein Uhlenbeck process expressed in terms of B from Exercise 1 to find the transition density function for the solution to the Langevin SDE (the Ornstein Uhlenbeck process).

Solution. We have

$$
\begin{aligned}
X(t+s) & =\mathrm{e}^{-\alpha(t+s)}\left(\frac{\sigma}{\sqrt{2 \alpha}}\left(B\left(\mathrm{e}^{2 \alpha(t+s)}\right)-B(1)\right)+x_{0}\right) \\
& =\mathrm{e}^{-\alpha(t+s)} x_{0}+\frac{\sigma}{\sqrt{2 \alpha}} \mathrm{e}^{-\alpha(t+s)}\left(\left(B\left(\mathrm{e}^{2 \alpha(t+s)}\right)-B\left(\mathrm{e}^{2 \alpha s}\right)\right)+\left(B\left(\mathrm{e}^{2 \alpha s}\right)-B(1)\right)\right) \\
& =\frac{\sigma}{\sqrt{2 \alpha}} \mathrm{e}^{-\alpha(t+s)}\left(B\left(\mathrm{e}^{2 \alpha(t+s)}\right)-B\left(\mathrm{e}^{2 \alpha s}\right)\right)+\mathrm{e}^{-\alpha t} X(s),
\end{aligned}
$$

where

$$
\frac{\sigma}{\sqrt{2 \alpha}} \mathrm{e}^{-\alpha(t+s)}\left(B\left(\mathrm{e}^{2 \alpha(t+s)}\right)-B\left(\mathrm{e}^{2 \alpha s}\right)\right)
$$

is an $\mathrm{N}\left(0,\left(\sigma^{2} /(2 \alpha)\right)\left(1-\mathrm{e}^{-2 \alpha t}\right)\right)$-distributed random variable independent of $\{X(r)\}_{r \leq s}$. It follows that $(X(t+s) \mid X(s)=x)$ is $\mathrm{N}\left(\mathrm{e}^{-\alpha t} x,\left(\sigma^{2} /(2 \alpha)\right)\left(1-\mathrm{e}^{-2 \alpha t}\right)\right)$-distributed, so that

$$
p(y, t+s, x, s)=\frac{d}{d y} P(y, t+s, x, s)=\frac{\sqrt{\alpha}}{\sqrt{\pi\left(1-\mathrm{e}^{-2 \alpha t}\right)} \sigma} \exp \left\{-\frac{\alpha\left(y-x \mathrm{e}^{-\alpha t}\right)^{2}}{\sigma^{2}\left(1-\mathrm{e}^{-2 \alpha t}\right)}\right\}
$$

for $t+s>s \geq 0$ and $x, y \in \mathbb{R}$.

Exercise 3. Solve the Stratanovich SDE

$$
d X(t)=-\alpha d t+\sigma X(t) \partial B(t) \quad \text { for } t>0, \quad X(0)=x_{0}
$$

where $\alpha, \sigma>0$ and $x_{0} \in \mathbb{R}$ are constants.
Solution. By Theorem 5.20 in Klebaner's book the above SDE is equivalent to the Itô SDE

$$
d X(t)=\left(\frac{1}{2} \sigma^{2} X(t)-\alpha\right) d t+\sigma X(t) d B(t) \quad \text { for } t>0, \quad X(0)=x_{0} .
$$

This in turn is a rather simple form of the linear SDE treated in Section 5.3 in Klebaner's book, with a solution given by

$$
X(t)=U(t)\left(x_{0}-\alpha \int_{0}^{t} \frac{d s}{U(s)}\right) \quad \text { where } \quad U(t)=\mathrm{e}^{\sigma B(t)}
$$

which is to say that

$$
X(t)=x_{0} \mathrm{e}^{\sigma B(t)}-\alpha \mathrm{e}^{\sigma B(t)} \int_{0}^{t} \mathrm{e}^{-\sigma B(s)} d s \text { for } t \geq 0 .
$$

Exercise 4. The CKLS (Chan-Koralyi-Longstaff-Sanders) SDE is given by

$$
d X(t)=(\alpha+\beta X(t)) d t+\sigma X(t)^{\gamma} d B(t) \quad \text { for } t>0, \quad X(0)=x_{0},
$$

where $\alpha, \sigma, \gamma, x_{0}>0$ and $\beta \in \mathbb{R}$ are constants. This SDE is used in contemporary mathematical finance research as a model for, e.g., interest rates and/or deseasonalized eletricity prices, and is famous for being very hard to do inference for and very hard to simulate when $\gamma>1$. Determine the stationary distribution for this SDE when it exists.

Solution. First note that the fact that $\alpha, x_{0}>0$ ensures that the solution is strictly positive when it exists. From Equation 6.69 in Klebaner's book we further see that the stationary probability density function is given by

$$
\pi(x)=\frac{1}{C x^{2 \gamma}} \exp \left\{\int_{1}^{x} \frac{2(\alpha+\beta y)}{\sigma^{2} y^{2 \gamma}} d y\right\} \quad \text { for } x>0
$$

whenever this function can be normalized to become a density, that is, whenever

$$
C=\int_{0}^{\infty} \frac{1}{x^{2 \gamma}} \exp \left\{\int_{1}^{x} \frac{2(\alpha+\beta y)}{\sigma^{2} y^{2 \gamma}} d y\right\} d x<\infty
$$

The issue whether C is finite or not in turn clearly boils down to check the integrability properties of the function

$$
f(x)=\frac{1}{x^{2 \gamma}} \exp \left\{\int_{1}^{x} \frac{2(\alpha+\beta y)}{\sigma^{2} y^{2 \gamma}} d y\right\}
$$

as $x \downarrow 0$ and as $x \uparrow \infty$. Now, as $x \downarrow 0$ we see that

$$
f(x) \sim\left\{\begin{array}{cl}
C_{1} x^{-2 \gamma} & \text { for } \gamma \in(0,1 / 2) \\
C_{2} x^{2 \alpha / \sigma^{2}-1} & \text { for } \gamma=1 / 2 \\
C_{3} x^{-2 \gamma} \exp \left\{-\left(2 \alpha /\left(\sigma^{2}(2 \gamma-1)\right)\right) x^{-(2 \gamma-1)}\right\} & \text { for } \gamma>1 / 2
\end{array}\right.
$$

where $C_{1}, C_{2}, C_{3}>0$ are constants. This is to say that we always have the integrability required as $x \downarrow 0$. When $x \uparrow \infty$ we further see that

$$
f(x) \sim\left\{\begin{array}{cl}
C_{4} x^{-2 \gamma} & \text { for } \gamma>1, \\
C_{5} x^{-2+2 \beta / \sigma^{2}} & \text { for } \gamma=1, \\
C_{6} x^{-2 \gamma} \exp \left\{\left(\beta /\left(\sigma^{2}(1-\gamma)\right)\right) x^{2-2 \gamma}\right\} & \text { for } \gamma \in(1 / 2,1), \\
C_{7} x^{2 \alpha / \sigma^{2}-1} \exp \left\{\left(2 \beta / \sigma^{2}\right) x\right\} & \text { for } \gamma=1 / 2, \\
C_{8} x^{-2 \gamma} \exp \left\{\left(\beta /\left(\sigma^{2}(1-\gamma)\right)\right) x^{2-2 \gamma}+\left(2 \alpha /\left(\sigma^{2}(1-2 \gamma)\right)\right) x^{1-2 \gamma}\right\} & \text { for } \gamma \in(0,1 / 2),
\end{array}\right.
$$

where $C_{4}, \ldots, C_{8}>0$ are constants. This is to say that we have the integrability required when

$$
\gamma>1 \quad \text { and } \quad \gamma=1,2 \beta<\sigma^{2} \quad \text { and } \quad \gamma \in(1 / 2,1), \beta \leq 0 \quad \text { and } \quad \gamma \in(0,1 / 2], \beta<0
$$

Exercise 5. Exercise 6.10 in Klebaner's book.
Solution. See the solution at the end of Klebaner's book.

Exercise 6. Let X be a standard normal distributed random variable. Show how X can be made to have any given probability density function $f: \mathbb{R} \rightarrow[0, \infty)$ by means of a change of probability measure. Also, if X has probability density function $f: \mathbb{R} \rightarrow[0, \infty)$, is it possible to make X have standard normal distributed by a change of probability measure?

Solution. Clearly X has probability density function f under the probability measure

$$
\mathbf{Q}(A)=\int_{A} f(X) \sqrt{2 \pi} \mathrm{e}^{X^{2} / 2} d \mathbf{P} \quad \text { for } A \in \mathcal{F}
$$

as this gives

$$
\begin{aligned}
\mathbf{Q}\{X \in B\} & =\mathbf{E}_{\mathbf{Q}}\left\{I_{\{X \in B\}}\right\} \\
& =\mathbf{E}_{\mathbf{P}}\left\{I_{\{X \in B\}} f(X) \sqrt{2 \pi} \mathrm{e}^{X^{2} / 2}\right\} \\
& =\int_{\mathbb{R}} I_{B}(x) f(x) \sqrt{2 \pi} \mathrm{e}^{x^{2} / 2} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} d x \\
& =\int_{B} f(x) d x \text { for } B \subseteq \mathbb{R} .
\end{aligned}
$$

If X instead has a strictly positive probability density function $f: \mathbb{R} \rightarrow(0, \infty)$ from the beginning, then X is standard normal distributed under the probability measure

$$
\mathbf{Q}(A)=\int_{A} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-X^{2} / 2} \frac{1}{f(X)} d \mathbf{P} \quad \text { for } A \in \mathcal{F}
$$

as this gives

$$
\begin{aligned}
\mathbf{Q}\{X \in B\} & =\mathbf{E}_{\mathbf{Q}}\left\{I_{\{X \in B\}}\right\} \\
& =\mathbf{E}_{\mathbf{P}}\left\{I_{\{X \in B\}} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-X^{2} / 2} \frac{1}{f(X)}\right\} \\
& =\int_{\mathbb{R}} I_{B}(x) \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} \frac{1}{f(x)} f(x) d x \\
& =\int_{B} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} d x \quad \text { for } B \subseteq \mathbb{R} .
\end{aligned}
$$

If f is not strictly positive, then it is not possible to make X standard normal distributed by means of this approach, as we then have

$$
\begin{aligned}
\mathbf{Q}\{\Omega\} & =\mathbf{E}_{\mathbf{Q}}\{1\} \\
& =\mathbf{E}_{\mathbf{P}}\left\{\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-X^{2} / 2} \frac{1}{f(X)}\right\} \\
& =\int_{\{x \in \mathbb{R}: f(x)>0\}} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} \frac{1}{f(x)} f(x) d x \\
& =\int_{\{x \in \mathbb{R}: f(x)>0\}} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} d x \\
& <1,
\end{aligned}
$$

so that \mathbf{Q} is no longer a probability measure.

