TMS165/MSA350 Stochastic Calculus

Written Exam Tuesday 24 October 2017 8.30-12.30

Teacher: Patrik Albin. Jour: Math PhD-student telephone 0317725325.
Aids: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4,21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. Find the quadratic variation process $[X, X](t)$ of the process $X(t)=\int_{0}^{t}(t-$ s) $d B(s)$. (5 points)

Task 2. Find coefficient functions $\mu(x)$ and $\sigma(x)$ such that the solution to the SDE $d X(t)=\mu(X(t)) d t+\sigma(X(t)) d B(t)$ satisfies $X(t)=\mathrm{e}^{\int_{0}^{t}(X(s)-1 / 2) d s+B(t)}$.

Task 3. Find the transition probability density $p(y, t, x, s)=\frac{d}{d y} \mathbf{P}\{X(t) \leq y \mid X(s)=x\}$ when $X(t)=B(t)+t$ is Brownian motion with unit drift coefficient. (5 points)

Task 4. What conditions have to be required for a smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$ to ensure that $f(B(t)+t)$ is a martingale? (5 points)

Task 5. Let $X(t)=B(t)+\sin (t)$ for $B(t)$ a \mathbf{P}-Brownian motion. Find $d \mathbf{Q} / d \mathbf{P}$ for an equivalent probability measure \mathbf{Q} to \mathbf{P} such that $X(t)_{t \in[0, T]}$ is a \mathbf{Q}-Brownian motion.
(5 points)
Task 6. Grönwall's Lemma states that if $A, B>0$ are constants and $\phi:[0, T] \rightarrow \mathbb{R}$ a continuous function such that $\phi(t) \leq A+B \int_{0}^{t} \phi(s) d s$ for $t \in[0, T]$ then it holds that $\phi(t) \leq A \mathrm{e}^{B t}$ for $t \in[0, T]$. Prove this result. (5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 24 October 2017

Task 1. $d X(t)=d(t B(t))-d\left(\int_{0}^{t} s d B(s)\right)=B(t) d t+t d B(t)-t d B(t)=B(t) d t$ making $d[X, X](t)=0$.

Task 2. $d X(t)=X(t)\left((X(t)-1 / 2) d t+d B(t)+(1 / 2)(d B(t))^{2}\right)=X(t)^{2} d t+X(t) d B(t)$ so that $\mu(x)=x^{2}$ and $\sigma(x)=x$.

Task 3. $p(y, t, x, s)=\frac{d}{d y} \mathbf{P}\{B(t) \leq y-t \mid B(s)=x-s\}=\frac{d}{d y} \mathbf{P}\{B(t)-B(s) \leq(y-x)-(t-$ $s)\}=f_{\mathrm{N}(0, t-s)}((y-x)-(t-s))=\frac{1}{\sqrt{2 \pi(t-s)}} \mathrm{e}^{((y-x)-(t-s))^{2} /(2(t-s))}$.
Task 4. $d f(B(t)+t)=f^{\prime}(B(t)+t)(d B(t)+d t)+\frac{1}{2} f^{\prime \prime}(B(t)+t) d t$ must have zero drift coefficient requiring that $\frac{1}{2} f^{\prime \prime}(x)+f^{\prime}(x)=0$ with solution $f(x)=C_{1}+C_{2} \mathrm{e}^{-2 x}$ for some constants $C_{1}, C_{2} \in \mathbb{R}$. We must also check that $\mathbf{E}\{|f(B(t)+t)|\}<\infty$ but that is clearly satisfied for this choice of f.

Task 5. Noting that $X(t)=B(t)+\int_{0}^{t} \cos (s) d s$ Girsanov's Theorem gives $d \mathbf{Q} / d \mathbf{P}=$ $\mathrm{e}^{-\int_{0}^{T} \cos (s) d B(s)-\frac{1}{2} \int_{0}^{T} \cos (s)^{2} d s}$.

Task 6. See page 2 in Stig Larsson's lecture notes.

