TMS165/MSA350 Stochastic Calculus

Written Exam Thursday 4 January 2018 8.30-12.30 am

Teacher: Patrik Albin. Jour: Malin Palö Forsström telephone 0317725325.
Aids: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.
Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. Explain why the Riemann-Stieltjes integral $\int f d g$ is not well-defined when $[f, g] \neq 0 . \quad(5$ points $)$

Task 2. Show that the quadratic covariation between two independent Brownian motions $B_{1}(t)$ and $B_{2}(t)$ is zero. (5 points)

Task 3. Solve the SDE

$$
d X(t)=\frac{1}{2} X(t)(\ln (X(t)))^{2} d t+X(t) \ln (X(t)) d B(t) \quad \text { for } t>0, \quad X(0)=\mathrm{e}
$$

Task 4. Is $\left\{\int_{0}^{t} B(r) d r\right\}_{t \geq 0}$ a martingale wrt. the filtration $\mathcal{F}_{t}=\mathcal{F}_{t}^{B}$ generated by B ? (5 points)

Task 5. Give the maximum likelihood estimator for the parameter μ based on observation of the solution $\{X(t)\}_{t \in[0, T]}$ of the SDE

$$
\begin{equation*}
d X(t)=\mu X(t) d t+\sigma X(t) d B(t), \quad X(0)=1 . \tag{5points}
\end{equation*}
$$

Task 6. Given sufficiently nice functions $\mu(x)$ and $\sigma(x)$ together with a constant $\lambda \in$ $(0,1)$ a composite Euler scheme for calculation of a numerical approximation Y_{N} of the exact value $X(T)$ of the solution of the $\operatorname{SDE} d X(t)=\mu(X(t)) d t+\sigma(X(t)) d B(t)$ for $t \in$ $(0, T], X(0)=X_{0}$, at $t=T$ is given by $Y_{0}=X_{0}$ together with the recursive scheme

$$
Y_{n}=Y_{n-1}+\left(\mu\left(Y_{n}\right)-f\left(Y_{n}\right)\right)\left(t_{n}-t_{n-1}\right)+\left(\lambda \sigma\left(Y_{n}\right)+(1-\lambda) \sigma\left(Y_{n-1}\right)\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right)
$$

for $n=1, \ldots, N$, where $0=t_{0}<t_{1}<\ldots<t_{N}=T$. Find the function $f(x)$ that makes Y_{N} converge to $X(T)$ as $\max _{1 \leq n \leq N} t_{n}-t_{n-1} \downarrow 0$. (5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 4 January 2018

Task 1. When $\int_{0}^{T} f d g$ is well-defined the limits $\lim _{\max _{1 \leq i \leq n} t_{i}-t_{i-1} \downarrow 0} \sum_{i=1}^{n} f\left(t_{i}\right)\left(g\left(t_{i}\right)-\right.$ $\left.g\left(t_{i-1}\right)\right)$ and $\lim _{\max _{1 \leq i \leq n} t_{i}-t_{i-1} \downarrow 0} \sum_{i=1}^{n} f\left(t_{i-1}\right)\left(g\left(t_{i}\right)-g\left(t_{i-1}\right)\right)$ must coincide for grids $0=t_{0}<t_{1}<\ldots<t_{n-1}<t_{n}=T$ that become infinitely fine in the limit. However, when $[f, g](T) \neq 0$ these limits do not coincide as their difference is precisely $[f, g](T)$.

Task 2. Picking a partition $0=t_{0}<t_{1}<\ldots<t_{n}=T$ of the interval $[0, T]$ we have $\mathbf{E}\left\{\sum_{i=1}^{n}\left(B_{1}\left(t_{i}\right)-B_{1}\left(t_{i-1}\right)\right)\left(B_{2}\left(t_{i}\right)-B_{2}\left(t_{i-1}\right)\right)\right\}=0$ and $\operatorname{Var}\left\{\sum_{i=1}^{n}\left(B_{1}\left(t_{i}\right)-B_{1}\left(t_{i-1}\right)\right)\right.$ $\left.\times\left(B_{2}\left(t_{i}\right)-B_{2}\left(t_{i-1}\right)\right)\right\}=\sum_{i=1}^{n} \operatorname{Var}\left\{\left(B_{1}\left(t_{i}\right)-B_{1}\left(t_{i-1}\right)\right)\left(B_{2}\left(t_{i}\right)-B_{2}\left(t_{i-1}\right)\right)\right\}=\sum_{i=1}^{n}$ $\mathbf{E}\left\{\left(B_{1}\left(t_{i}\right)-B_{1}\left(t_{i-1}\right)\right)^{2}\left(B_{2}\left(t_{i}\right)-B_{2}\left(t_{i-1}\right)\right)^{2}\right\}=\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{2} \leq T \times \max _{1 \leq i \leq n}\left(t_{i}-t_{i-1}\right)$ $\rightarrow 0$ as $\max _{1 \leq i \leq n}\left(t_{i}-t_{i-1}\right) \downarrow 0$ so that $\sum_{i=1}^{n}\left(B_{1}\left(t_{i}\right)-B_{1}\left(t_{i-1}\right)\right)\left(B_{2}\left(t_{i}\right)-B_{2}\left(t_{i-1}\right)\right) \rightarrow_{\mathbb{L}^{2}} 0$ making $\left[B_{1}, B_{2}\right]([0, T])=0$.

Task 3. Taking $Y(t)=\ln (X(t))$ Itô's formula shows that

$$
\begin{aligned}
d Y(t) & =\frac{d X(t)}{X(t)}-\frac{d[X, X](t)}{2 X(t)^{2}} \\
& =\frac{1}{2}(\ln (X(t)))^{2} d t+\ln (X(t)) d B(t)-\frac{1}{2}(\ln (X(t)))^{2} d t \\
& =Y(t) d B(t)
\end{aligned}
$$

with $Y(0)=1$, so that $Y(t)=\mathrm{e}^{B(t)-t / 2}$ and $X(t)=\exp \left\{\mathrm{e}^{B(t)-t / 2}\right\}$.
Task 4. As $\mathbf{E}\left\{\int_{0}^{t} B(r) d r \mid \mathcal{F}_{s}\right\}=\int_{0}^{s} B(r) d r+\mathbf{E}\left\{\int_{s}^{t}(B(r)-B(s)) d r\right\}+(t-s) B(s)=$ $\int_{0}^{s} B(r) d r+(t-s) B(s)$ we see that $\int_{0}^{t} B(r) d r$ is not a martingale.

Task 5. By insertion in Eq. 10.52 in Klebaner's book with $\mu_{1}(x, t)=0, \mu_{2}(x, t)=\mu x$ and $\sigma(x, t)=\sigma x$ we find that the likelihood is

$$
\Lambda=\exp \left\{\int_{0}^{T} \frac{\mu X(t)}{\sigma^{2} X(t)^{2}} d X(t)-\frac{1}{2} \int_{0}^{T} \frac{\mu^{2} X(t)^{2}}{\sigma^{2} X(t)^{2}} d t\right\} .
$$

By solving the equation $\partial \Lambda / \partial \mu=0$ for μ we obtain the maximum likelihood estimator $\frac{1}{T} \int_{0}^{T} X(t)^{-1} d X(t)$ of μ.

Task 6. According to the Euler method we have the convergence

$$
\sum_{n=1}^{N}\left(\mu\left(Y_{n-1}\right)\left(t_{n}-t_{n-1}\right)+\sigma\left(Y_{n-1}\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right)\right) \rightarrow X(T)
$$

as $\max _{1 \leq n \leq N} t_{n}-t_{n-1} \downarrow 0$. Here we have

$$
\mu\left(Y_{n-1}\right)\left(t_{n}-t_{n-1}\right) \approx\left(\mu\left(Y_{n}\right)-\mu^{\prime}\left(Y_{n}\right)\left(Y_{n}-Y_{n-1}\right)\right)\left(t_{n}-t_{n-1}\right) \approx \mu\left(Y_{n}\right)\left(t_{n}-t_{n-1}\right)
$$

and

$$
\begin{aligned}
\sigma\left(Y_{n-1}\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right) & \approx\left(\sigma\left(Y_{n}\right)-\sigma^{\prime}\left(Y_{n}\right)\left(Y_{n}-Y_{n-1}\right)\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right) \\
& \approx \sigma\left(Y_{n}\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right)-\sigma^{\prime}\left(Y_{n}\right) \sigma\left(Y_{n}\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right)^{2} \\
& \approx \sigma\left(Y_{n}\right)\left(B\left(t_{n}\right)-B\left(t_{n-1}\right)\right)-\sigma^{\prime}\left(Y_{n}\right) \sigma\left(Y_{n}\right)\left(t_{n}-t_{n-1}\right)
\end{aligned}
$$

so that we must have $f(x)=\lambda \sigma^{\prime}(x) \sigma(x)$.

