TMS165/MSA350 Stochastic Calculus

Written Exam Thursday 4 January 2018 8.30–12.30 am

TEACHER: Patrik Albin. JOUR: Malin Palö Forsström telephone 0317725325.

AIDS: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).

GRADES: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

MOTIVATIONS: All answers/solutions must be motivated. GOOD LUCK!

Througout this exam $B = \{B(t)\}_{t \ge 0}$ denotes a Brownian motion.

Task 1. Explain why the Riemann-Stieltjes integral $\int f \, dg$ is not well-defined when $[f, g] \neq 0.$ (5 points)

Task 2. Show that the quadratic covariation between two independent Brownian motions $B_1(t)$ and $B_2(t)$ is zero. (5 points)

Task 3. Solve the SDE

$$dX(t) = \frac{1}{2}X(t)(\ln(X(t)))^2 dt + X(t)\ln(X(t)) dB(t) \quad \text{for } t > 0, \quad X(0) = e.$$

(5 points)

Task 4. Is $\{\int_0^t B(r) dr\}_{t \ge 0}$ a martingale wrt. the filtration $\mathcal{F}_t = \mathcal{F}_t^B$ generated by *B*? (5 points)

Task 5. Give the maximum likelihood estimator for the parameter μ based on observation of the solution $\{X(t)\}_{t\in[0,T]}$ of the SDE

$$dX(t) = \mu X(t) dt + \sigma X(t) dB(t), \quad X(0) = 1.$$
 (5 points)

Task 6. Given sufficiently nice functions $\mu(x)$ and $\sigma(x)$ together with a constant $\lambda \in (0, 1)$ a composite Euler scheme for calculation of a numerical approximation Y_N of the exact value X(T) of the solution of the SDE $dX(t) = \mu(X(t)) dt + \sigma(X(t)) dB(t)$ for $t \in (0, T]$, $X(0) = X_0$, at t = T is given by $Y_0 = X_0$ together with the recursive scheme

$$Y_n = Y_{n-1} + \left(\mu(Y_n) - f(Y_n)\right)(t_n - t_{n-1}) + \left(\lambda\sigma(Y_n) + (1 - \lambda)\sigma(Y_{n-1})\right)(B(t_n) - B(t_{n-1}))$$

for n = 1, ..., N, where $0 = t_0 < t_1 < ... < t_N = T$. Find the function f(x) that makes Y_N converge to X(T) as $\max_{1 \le n \le N} t_n - t_{n-1} \downarrow 0$. (5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 4 January 2018

Task 1. When $\int_0^T f \, dg$ is well-defined the limits $\lim_{\max_{1 \le i \le n} t_i - t_{i-1} \downarrow 0} \sum_{i=1}^n f(t_i) (g(t_i) - g(t_{i-1}))$ and $\lim_{\max_{1 \le i \le n} t_i - t_{i-1} \downarrow 0} \sum_{i=1}^n f(t_{i-1}) (g(t_i) - g(t_{i-1}))$ must coincide for grids $0 = t_0 < t_1 < \ldots < t_{n-1} < t_n = T$ that become infinitely fine in the limit. However, when $[f, g](T) \neq 0$ these limits do not coincide as their difference is precisely [f, g](T).

Task 2. Picking a partition $0 = t_0 < t_1 < \ldots < t_n = T$ of the interval [0, T] we have $\mathbf{E}\left\{\sum_{i=1}^{n} (B_1(t_i) - B_1(t_{i-1})) (B_2(t_i) - B_2(t_{i-1}))\right\} = 0$ and $\mathbf{Var}\left\{\sum_{i=1}^{n} (B_1(t_i) - B_1(t_{i-1})) (B_2(t_i) - B_2(t_{i-1}))\right\}$ $\times (B_2(t_i) - B_2(t_{i-1}))\right\} = \sum_{i=1}^{n} \mathbf{Var}\left\{(B_1(t_i) - B_1(t_{i-1})) (B_2(t_i) - B_2(t_{i-1}))\right\} = \sum_{i=1}^{n} \mathbf{E}\left\{(B_1(t_i) - B_1(t_{i-1}))^2 (B_2(t_i) - B_2(t_{i-1}))^2\right\} = \sum_{i=1}^{n} (t_i - t_{i-1})^2 \leq T \times \max_{1 \leq i \leq n} (t_i - t_{i-1})$ $\rightarrow 0$ as $\max_{1 \leq i \leq n} (t_i - t_{i-1}) \downarrow 0$ so that $\sum_{i=1}^{n} (B_1(t_i) - B_1(t_{i-1})) (B_2(t_i) - B_2(t_{i-1})) \rightarrow_{\mathbb{L}^2} 0$ making $[B_1, B_2]([0, T]) = 0$.

Task 3. Taking $Y(t) = \ln(X(t))$ Itô's formula shows that

$$dY(t) = \frac{dX(t)}{X(t)} - \frac{d[X,X](t)}{2X(t)^2}$$

= $\frac{1}{2}(\ln(X(t)))^2 dt + \ln(X(t)) dB(t) - \frac{1}{2}(\ln(X(t)))^2 dt$
= $Y(t) dB(t)$

with Y(0) = 1, so that $Y(t) = e^{B(t) - t/2}$ and $X(t) = \exp\{e^{B(t) - t/2}\}$.

Task 4. As $\mathbf{E}\{\int_0^t B(r) dr | \mathcal{F}_s\} = \int_0^s B(r) dr + \mathbf{E}\{\int_s^t (B(r) - B(s)) dr\} + (t-s) B(s) = \int_0^s B(r) dr + (t-s) B(s)$ we see that $\int_0^t B(r) dr$ is not a martingale.

Task 5. By insertion in Eq. 10.52 in Klebaner's book with $\mu_1(x,t) = 0$, $\mu_2(x,t) = \mu x$ and $\sigma(x,t) = \sigma x$ we find that the likelihood is

$$\Lambda = \exp\left\{\int_0^T \frac{\mu X(t)}{\sigma^2 X(t)^2} \, dX(t) - \frac{1}{2} \int_0^T \frac{\mu^2 X(t)^2}{\sigma^2 X(t)^2} \, dt\right\}$$

By solving the equation $\partial \Lambda / \partial \mu = 0$ for μ we obtain the maximum likelihood estimator $\frac{1}{T} \int_0^T X(t)^{-1} dX(t)$ of μ .

Task 6. According to the Euler method we have the convergence

$$\sum_{n=1}^{N} \left(\mu(Y_{n-1}) \left(t_n - t_{n-1} \right) + \sigma(Y_{n-1}) \left(B(t_n) - B(t_{n-1}) \right) \right) \to X(T)$$

as $\max_{1 \le n \le N} t_n - t_{n-1} \downarrow 0$. Here we have

$$\mu(Y_{n-1})\left(t_n - t_{n-1}\right) \approx \left(\mu(Y_n) - \mu'(Y_n)\left(Y_n - Y_{n-1}\right)\right)\left(t_n - t_{n-1}\right) \approx \mu(Y_n)\left(t_n - t_{n-1}\right)$$

 $\quad \text{and} \quad$

$$\begin{aligned} \sigma(Y_{n-1}) \left(B(t_n) - B(t_{n-1}) \right) &\approx \left(\sigma(Y_n) - \sigma'(Y_n) \left(Y_n - Y_{n-1} \right) \right) \left(B(t_n) - B(t_{n-1}) \right) \\ &\approx \sigma(Y_n) \left(B(t_n) - B(t_{n-1}) \right) - \sigma'(Y_n) \sigma(Y_n) \left(B(t_n) - B(t_{n-1}) \right)^2 \\ &\approx \sigma(Y_n) \left(B(t_n) - B(t_{n-1}) \right) - \sigma'(Y_n) \sigma(Y_n) \left(t_n - t_{n-1} \right), \end{aligned}$$

so that we must have $f(x) = \lambda \sigma'(x)\sigma(x)$.