TMS165/MSA350 Stochastic Calculus

Written Exam Friday 4 January 2019 2-6 pm

Teacher: Patrik Albin. Jour: Jimmy Johansson, telephone 0317725325.
AIDS: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.
Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. Find the quadratic variation process of $\{B(f(t))\}_{t \geq 0}$ when $f:[0, \infty) \rightarrow[0, \infty)$ is a continuously differentiable strictly increasing function. (5 points)

Task 2. Do $X(t)=\sinh (B(t)+t)$ satisfy any SDE? [Recall that $\sinh (t)=\frac{1}{2}\left(\mathrm{e}^{t}-\mathrm{e}^{-t}\right)$ with $\frac{d}{d t} \sinh (t)=\cosh (t)=\frac{1}{2}\left(\mathrm{e}^{t}+\mathrm{e}^{-t}\right)$ and $\cosh (t)^{2}=1+\sinh (t)^{2}$.] (5 points)

Task 3. Let X be a Itô process with stochastic exponential $\mathcal{E}(X)$ and stochastic logarithm $\mathcal{L}(X)$ (for X strictly positive). Is it true that $\mathcal{E}(\mathcal{L}(X))=X$ or that $\mathcal{L}(\mathcal{E}(X))=$ X ? (5 points)

Task 4. Given constants $\alpha, \sigma>0$, find the solution $f(x, t)$ to the PDE

$$
\frac{\partial f(x, t)}{\partial t}+\frac{\sigma^{2}}{2} \frac{\partial^{2} f(x, t)}{\partial x^{2}}-\alpha x \frac{\partial f(x, t)}{\partial x}=0 \text { for } t \in[0, T], \quad f(x, T)=x . \quad(\mathbf{5} \text { points) }
$$

Task 5. Let $H \in P_{T}$ be such that the stochastic exponential $\mathcal{E}(X)$ of $X(t)=-\int_{0}^{t} H d B$ is a martingale. Show that $\left\{B(t)+\int_{0}^{t} H(s) d s\right\}_{t \in[0, T]}$ is a Brownian motion under the probability measure \mathbf{Q} given by $d \mathbf{Q} / d \mathbf{P}=\mathcal{E}(X)(T) . \quad$ (5 points)

Task 6. Describe how Itô-Taylor expansion is made and say something about why it is made. (5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam January 2019

Task 1. $\{f(t)\}_{t \geq 0}$.
Task 2. For $X(t)=\sinh (B(t)+t)$ we have $d X(t)=\cosh (B(t)+t)(d B(t)+d t)+$ $\frac{1}{2} \sinh (B(t)+t) d t=\left(\sqrt{1+X(t)^{2}}+\frac{1}{2} X(t)\right) d t+\sqrt{1+X(t)^{2}} d B(t)$ with $X(0)=0$.

Task 3. As for an Itô process Y we have $\mathcal{E}(Y)(0)=1$ and $\mathcal{L}(Y)(0)=0$ (for Y strictly positive) it cannot be true in general that $\mathcal{E}(\mathcal{L}(X))(t)=X(t)$ or that $\mathcal{L}(\mathcal{E}(X))(t)=X(t)$ [as the first identity requires $X(0)=1$ and the second that $X(0)=0$.

Task 4. According to the Feynman-Kac formula we have $f(x, t)=\mathbf{E}\{X(T) \mid X(t)=$ $x\}$ where $X(t)=\mathrm{e}^{-\alpha t}\left(X(0)+\int_{0}^{t} \sigma \mathrm{e}^{\alpha r} d B(r)\right)=\mathrm{e}^{-\alpha(t-s)} X(s)+\mathrm{e}^{-\alpha t} \int_{s}^{t} \sigma \mathrm{e}^{\alpha r} d B(r)$ solves the Langevin equation so that $f(x, t)=\mathbf{E}\left\{\mathrm{e}^{-\alpha(T-t)} x+\mathrm{e}^{-\alpha T} \int_{t}^{T} \sigma \mathrm{e}^{\alpha r} d B(r)\right\}=$ $\mathrm{e}^{-\alpha(T-t)} x$.

Task 5. See the proof of Theorem 10.16 in Klebaner's book.
Task 6. See Stig Larsson's lecture notes.

