TMS165/MSA350 Stochastic Calculus

Written Exam Friday 23 August 2019 8.30-12.30

Teacher: Patrik Albin. Jour: Jimmy Johansson, telephone 0317725325.
AIDS: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.
Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. For two functions $f, g:[0, \infty) \rightarrow \mathbb{R}$ we know the values of the quadratic variations $[f+g, f+g](t)$ and $[f-g, f-g](t)$ at a time $t>0$. Based on this information only (but knowing nothing more than that about f and g), which of the quantities $[f, f](t)$, $[g, g](t)$ and $[f, g](t)$ can we calculate the value of (if any)?

Task 2. Find the solution $\{X(t)\}_{t \geq 0}$ to the SDE

$$
d X(t)=X(t) \sin (B(t)) d B(t) \quad \text { for } t>0, \quad X(0)=1 .
$$

Task 3. Find a solution $p(y, t)$ to the PDE

$$
\frac{1}{2} \frac{\partial^{2} p}{\partial y^{2}}-\frac{\partial p}{\partial y}-\frac{\partial p}{\partial t}=0 \quad \text { for }(y, t) \in \mathbb{R} \times(0, \infty)
$$

that is a probability density function as a function of y for any given t.
Task 4. Let X be a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$ [where Ω is the sample space of all possible outcomes of a random experiment, \mathcal{F} is the σ-field of those subsets of Ω that are events and \mathbf{P} is a probability measure defined on $(\Omega, \mathcal{F})]$. Prove that $\mathbf{E}\{\mathbf{E}\{X \mid \mathcal{G}\}\}=\mathbf{E}\{X\}$ for any σ-field \mathcal{G} that is contained in \mathcal{F} and that $\mathbf{E}\{X \mid \mathcal{G}\}=\mathbf{E}\{X\}$ in the particular case when $\mathcal{G}=\{\emptyset, \Omega\}$.
(5 points)
Task 5. Given some constants $\mu, \sigma \in \mathbb{R}$, consider the SDE

$$
d X(t)=\mu d t+\sigma X(t) d B(t) \quad \text { for } t \geq 0 .
$$

Does this SDE have a stationary distribution? If the answer is yes, find that stationary distribution - if the answer is no, explain why not. (5 points)

Task 6. Consider a so called fully implicit numerical scheme given by
$Y_{0}=1 \quad$ and $\quad Y_{k}=Y_{k-1}-Y_{k}\left(t_{k}-t_{k-1}\right)+Y_{k}\left(B\left(t_{k}\right)-B\left(t_{k-1}\right)\right) \quad$ for $k=\{1, \ldots, n\}$. As the grid $0=t_{0}<t_{1}<\ldots<t_{n}=T$ becomes finer and finer, what SDE will the above scheme become an approximative numerical solution of?
(5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 23 August 2019

Task 1. To know the values of $[f+g, f+g](t)$ and $[f-g, f-g](t)$ is equivalent to know the values of $\frac{1}{4}([f+g, f+g](t)-[f-g, f-g](t))=[f, g](t)$ and $\frac{1}{2}([f+g, f+g](t)+[f-g, f-g](t))$ $=[f, f](t)+[g, g](t)$. Hence we can say what is the value of $[f, g](t)$, but not what is the values of $[f, f](t)$ or $[g, g](t)$ (as we know the value of the sum of these two only).

Task 2. The solution X is the stochastic exponential of the martingale $\left\{\int_{0}^{t} \sin (B(s))\right.$ $d B(s)\}_{t \geq 0}$, which in turn is given by $\left\{\exp \left[\int_{0}^{t} \sin (B(s)) d B(s)-\frac{1}{2} \int_{0}^{t} \sin (B(s))^{2} d s\right]\right\}_{t \geq 0}$.

Task 3. The PDE is the Kolmogorov forward equation for the $\operatorname{SDE} d X(t)=d t+d B(t)$, so that p is the transition density function for Brownian motion with unit drift, that is,

$$
p(y, t)=\frac{1}{\sqrt{2 \pi(t-s)}} \exp \left\{-\frac{(y-x-t+s)^{2}}{2(t-s)}\right\} \quad \text { for any } x, y \in \mathbb{R} \text { and } 0<s<t
$$

Task 4. By definition we have $\mathbf{E}\left\{I_{A} \mathbf{E}\{X \mid \mathcal{G}\}\right\}=\mathbf{E}\left\{I_{A} X\right\}$ for any event $A \in \mathcal{G}$. Taking $A=\Omega$, so that $I_{A}(\omega)=1$ for all $\omega \in \Omega$, we get $\mathbf{E}\{\mathbf{E}\{X \mid \mathcal{G}\}\}=\mathbf{E}\{X\}$. By definition $\mathbf{E}\{X \mid\{\emptyset, \Omega\}\}$ is the unique $\{\emptyset, \Omega\}$-measurable random variable that satisfies $\mathbf{E}\left\{I_{A} \mathbf{E}\{X \mid\{\emptyset, \Omega\}\}\right\}=\mathbf{E}\left\{I_{A} X\right\}$ for $A \in\{\emptyset, \Omega\}$. It follows that $\mathbf{E}\{X \mid\{\emptyset, \Omega\}\}=$ $\mathbf{E}\{X\}$ as $\mathbf{E}\{X\}$ is $\{\emptyset, \Omega\}$-measurable (as is any non-random constant) and $\mathbf{E}\left\{I_{A} \mathbf{E}\{X\}\right\}$ $=\mathbf{E}\left\{I_{A} X\right\}$ holds trivially for $A=\emptyset$ and $A=\Omega$ with values 0 and $\mathbf{E}\{X\}$, respectively.

Task 5. For $\mu=0$ we see that the stationary distribution is the constant value zero. For $\mu>0$ the stationary distribution has probability density function $\pi(x)$ given by Equation 6.69 in Klebaner's book as $\pi(x)=C \exp \left\{\int_{\infty}^{x} 2 \mu(y) / \sigma(y)^{2} d y\right\} / \sigma^{2}(x)=$ $C \mathrm{e}^{-2 \mu /\left(\sigma^{2} x\right)} /\left(\sigma^{2} x^{2}\right)=2 \mu \mathrm{e}^{-2 \mu /\left(\sigma^{2} x\right)} /\left(\sigma^{2} x^{2}\right)$ for $x>0$ and $\pi(x)=0$ otherwise, while similary for $\mu<0$ we have $\pi(x)=2 \mu \mathrm{e}^{-2 \mu /\left(\sigma^{2} x\right)} /\left(\sigma^{2} x^{2}\right)$ for $x<0$ and $\pi(x)=0$ otherwise.

Task 6. The scheme gives an approximate solution to the $\operatorname{SDE} d Y(t)=-Y(t) d t+$ $Y(t) d B(t)+d Y(t) d B(t)=-Y(t) d t+Y(t) d B(t)+(-Y(t) d t+Y(t) d B(t)+d Y(t) d B(t))$ $d B(t)=Y(t) d B(t)$ for $t \in[0, T]$ with initial value $Y(0)=1$, that is to say, an approximation of the stochastic exponential of B.

