TMS165/MSA350 Stochastic Calculus

Written Exam Tuesday 29 October 2019 8.30-12.30

Teacher: Patrik Albin. Jour: NN, telephone 0317725325.
Aids: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4,21 points (70%) for grade VG and 24 points (80%) for grade 5 , respectively.

Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. Find the covariation $\left[B_{1}, B_{2}\right](t)$ between two independent BM's $\left\{B_{1}(t)\right\}_{t \geq 0}$ and $\left\{B_{2}(t)\right\}_{t \geq 0} \quad$ (5 points)

Task 2. Let $X(t)$ solve the $\operatorname{SDE} d X(t)=\mu(X(t)) d t+\sigma(X(t)) d B(t)$ where $\sigma: \mathbb{R} \rightarrow$ $(0, \infty)$ is continuously differentiable. It is possible to find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $Y(t)=f(X(t))$ satisfies the $\operatorname{SDE} d Y(t)=\hat{\mu}(Y(t)) d t+d B(t)$ for some new drift coefficient function $\hat{\mu}: \mathbb{R} \rightarrow \mathbb{R}$. Find f and $\hat{\mu}$. (5 points)

Task 3. Find the Stratonovich stochastic exponential $X(t)$ of $B(t)$ given by $d X(t)=$ $X(t) \partial B(t), X(0)=1 . \quad$ (5 points)

Task 4. Find a solution to the PDE $\frac{\partial f(x, t)}{\partial t}+\frac{1}{2} \frac{\partial^{2} f(x, t)}{\partial x^{2}}+x \frac{\partial f(x, t)}{\partial x}=f(x, t)$ for $t \in[0, T]$ with $f(x, T)=x . \quad$ (5 points)

Task 5. Let X be an $\mathrm{N}(0,1)$-distributed random variable on a probability space $(\Omega, \mathcal{F}, \mathbf{P})$. Can X have unit Q-mean Poisson distribution after a change of probability measure to $\mathbf{Q}(A)=\int_{A} \Lambda d \mathbf{P}$ for $A \in \mathcal{F}$ where $\Lambda \geq 0$ is unit \mathbf{P}-mean? (5 points)

Task 6. Explain the concept of Itô-Taylor expansion of a solution $X(t)$ to a time homogeneous $\operatorname{SDE} d X(t)=\mu(X(t)) d t+\sigma(X(t)) d B(t)$. (5 points)

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 29 October 2019

Task 1. As $\left\{\frac{1}{\sqrt{2}}\left(B_{1}(t)+B_{2}(t)\right)\right\}_{t \geq 0}$ and $\left\{\frac{1}{\sqrt{2}}\left(B_{1}(t)-B_{2}(t)\right)\right\}_{t \geq 0}$ are also BM's we get $\left[B_{1}, B_{2}\right](t)=\frac{1}{4}\left(\left[B_{1}+B_{2}, B_{1}+B_{2}\right](t)-\left[B_{1}-B_{2}, B_{1}-B_{2}\right](t)\right)=\frac{1}{2}\left(\left[\frac{1}{\sqrt{2}}\left(B_{1}+B_{2}\right), \frac{1}{\sqrt{2}}\left(B_{1}+\right.\right.\right.$ $\left.\left.\left.B_{2}\right)\right](t)-\left[\frac{1}{\sqrt{2}}\left(B_{1}-B_{2}\right), \frac{1}{\sqrt{2}}\left(B_{1}-B_{2}\right)\right](t)\right)=\frac{1}{2}(t-t)=0$.

Task 2. As $d f(X(t))=f^{\prime}(X(t))(\mu(X(t)) d t+\sigma(X(t)) d B(t))+\frac{1}{2} f^{\prime \prime}(X(t)) \sigma(X(t))^{2} d t$ gives $f^{\prime}(x) \sigma(x)=1$ we take $f(x)=\int_{0}^{x} \sigma(y)^{-1} d y$ with $\hat{\mu}(Y(t))=f^{\prime}(X(t)) \mu(X(t))+$ $\frac{1}{2} f^{\prime \prime}(X(t)) \sigma(X(t))^{2}=\mu(X(t)) / \sigma(X(t))-\frac{1}{2} \sigma^{\prime}(X(t))=\mu\left(f^{-1}(Y(t))\right) / \sigma\left(f^{-1}(Y(t))\right)-$ $\frac{1}{2} \sigma^{\prime}\left(f^{-1}(Y(t))\right)$.

Task 3. As $d X(t)=X(t) \partial B(t)=\frac{1}{2} X(t) d t+X(t) d B(t)$ we have $X(t)=\mathcal{E}\left(\frac{1}{2} t+B(t)\right)$ $=\mathrm{e}^{\frac{1}{2} t+B(t)-\frac{1}{2}\left[\frac{1}{2} t+B(t), \frac{1}{2} t+B(t)\right]}=\mathrm{e}^{B(t)}$.

Task 4. By Feynman-Kac's formula $f(x, t)=\mathbf{E}\left\{\mathrm{e}^{-(T-t)} X(T) \mid X(t)=x\right\}$ where $X(t)$ solves the Langevin SDE $d X(t)=X(t) d t+d B(t)$ so that $X(T)=\mathrm{e}^{T}(X(0)+$ $\left.\int_{0}^{T} \mathrm{e}^{-s} d B(s)\right)=\mathrm{e}^{T}\left(\mathrm{e}^{-t} X(t)+\int_{t}^{T} \mathrm{e}^{-s} d B(s)\right)$ giving $\left.f(x, t)=\ldots=x .:\right)$

Task 5. No as $\mathbf{Q} \ll \mathbf{P}$ means $\mathbf{P}\{X=x\}=0$ implies $\mathbf{Q}\{X=x\}=0$ for all $x \in \mathbb{R}$.
Task 6. See Stig's lecture notes.

