TMS165/MSA350 Stochastic Calculus

Written Exam Friday 3 January 20202 PM-6 PM

Teacher: Patrik Albin. Jour: Jimmy Johansson, telephone 0317725325.
Aids: Two sheets (=four pages) of hand-written notes (computer print-outs and/or xerox-copies are not allowed).
Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4, 21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.

Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. Consider the probability space $(\Omega, \mathcal{F}, \mathbf{P})$ with $\Omega=\{1,2,3\}, \mathcal{F}$ all subsets of Ω and \mathbf{P} the uniform probability measure $\mathbf{P}(\{\omega\})=\frac{1}{3}$ for $\omega \in \Omega$. Find $\mathbf{E}\{X \mid \mathcal{G}\}$ for the random variable $X(\omega)=\omega$ and σ-field $\mathcal{G}=\{\emptyset,\{1\},\{2,3\}, \Omega\} . \quad$ (5 points)

Task 2. Does the stochastic exponential of BM $\mathcal{E}(B(t))$ have a stationary PDF (/probability density function)? (Remember that answers must be motivated!)

Task 3. You are given observed values $\{X(t)\}_{t \in[0, T]}$ of the solution to a Langevin SDE $d X(t)=-\alpha X(t) d t+\sigma d B(t)$ for $t \in[0, T]$ with unkonwn parameters $\alpha \in \mathbb{R}$ and $\sigma>0$. How can the parameters be estimated using the observations?
(5 points)
Task 4. Is it possible for $\left\{g(t) B(t) \mathrm{e}^{B(t)}\right\}_{t \in[0, T]}$ to be a martingale with respect to $\left\{\mathcal{F}_{t}^{B}\right\}_{t \in[0, T]}$ for some choice of non-random continuous function $g:[0, T] \rightarrow \mathbb{R}$ that is not zero for all $t \in[0, T]$? (5 points)

Task 5. Consider a time homogeneous SDE $d X(t)=\mu(X(t)) d t+\sigma(X(t)) d B(t)$ for $t \in[0, T], X(0)=x_{0}$, with continuous coefficient functions $\mu, \sigma: \mathbb{R} \rightarrow \mathbb{R}$. Give necessary and sufficient conditions for the solution $\{X(t)\}_{t \in[0, T]}$ to have zero quadratic variation $[X, X](t)=0$ for $t \in[0, T] . \quad$ (5 points)

Task 6. Derive the Milstein method for approximative numerical solution of SDE.

TMS165/MSA350 Stochastic Calculus

Solutions to Written Exam 3 January 2020

Task 1. $\mathbf{E}\{X \mid \mathcal{G}\}(\omega)=1$ for $\omega=1$ and $\frac{5}{2}$ for $\omega \in\{2,3\}$ as $\mathbf{E}\left\{1 \cdot \mathbf{1}_{\{1\}}(\omega)\right\}=1 \cdot \frac{1}{3}=$ $\mathbf{E}\left\{X \mathbf{1}_{\{1\}}(\omega)\right\}$ and $\mathbf{E}\left\{\frac{5}{2} \cdot \mathbf{1}_{\{2,3\}}(\omega)\right\}=\frac{5}{2} \cdot \frac{2}{3}=\mathbf{E}\left\{X \mathbf{1}_{\{2,3\}}(\omega)\right\}$.

Task 2. As $\mathcal{E}(B(t))$ is the solution to the time homogeneous $\operatorname{SDE} d X(t)=X(t) d B(t)$ with $\mu(x)=0$ and $\sigma(x)=x$ a stationary PDF π must be given by

$$
\pi(x)=\frac{C}{\sigma(x)^{2}} \exp \left\{\int_{x_{0}}^{x} \frac{2 \mu(y)}{\sigma(y)^{2}} d y\right\}=\frac{C}{x^{2}},
$$

where $C>0$ must be selected to make $\int_{-\infty}^{\infty} \pi(x) d x=1$. However, the proposed π is not integrable at zero and so there exists no stationary PDF.

Task 3. As $[X, X](t)=\int_{0}^{t} \sigma(X(s))^{2} d s=\sigma^{2} t$ we take $\hat{\sigma}^{2}=\frac{1}{T} \sum_{i=1}^{n}\left(X\left(t_{i}\right)-X\left(t_{i-1}\right)\right)^{2}$ for a sufficiently fine grid $0=t_{0}<t_{1}<\ldots<t_{n}=T$. The estimate of α is Eq. 10.55 in Klebaner's book.

Task 4. By Itô's formula we have

$$
d\left(g(t) B(t) \mathrm{e}^{B(t)}\right)=\left(g^{\prime}(t) B(t)+g(t)+\frac{1}{2} g(t) B(t)\right) \mathrm{e}^{B(t)} d t+(g(t)+g(t) B(t)) \mathrm{e}^{B(t)} d B(t) .
$$

For a martingale we must therefore have either $g(t)=0$ or $\frac{1}{2}+g^{\prime}(t) / g(t)=-1 / B(t)$ making $g(t)=\exp \left\{-\frac{1}{2} t-\int 1 / B(t) d t\right\}$ random. So the answer is no!

Task 5. As $[X, X](T)=\int_{0}^{T} \sigma(X(t))^{2} d t=0$ implies $\sigma(X(t))=0$ for $t \in[0, T]$ (as $\sigma(X(\cdot))$ is continuous) so that $X(t)=x_{0}+\int_{0}^{t} \mu(X(s)) d s$ and the SDE is an ODE. Conversely the solution to an ODE has zero quadratic variation [as $X(\cdot)$ is continuously differentiable being the integral of continuous $\mu(X(\cdot))$].

Task 6. See Stig Larsson's lecture notes.

