TMS165/MSA350 Stochastic Calculus
 Written home exam Friday 21 August 2020 8.30-12.30

TEACHER: Patrik Albin 0317723512 palbin@chalmers.se.
AIds: All aids are permitted. (See the Canvas course "TMS165 Re-Exam TMS165/ MSA350" with instructions for this reexam for clarifications.)

Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4,21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.
Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. Let (X, Y) be a continuous two-dimensional random variable with PDF (/probability density function) $f_{X, Y}(x, y)$ such that $f_{Y}(y)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d x>0$ for $y \in \mathbb{R}$. Show that $\mathbf{E}\{X \mid \sigma(Y)\}=g(Y)$ where $g(y)=\mathbf{E}\{X \mid Y=y\}=\int_{-\infty}^{\infty} x f_{X, Y}(x, y) / f_{Y}(y) d x$. [Hint: $\sigma(Y)=\left\{\mathbf{1}_{A}(Y): A \in \mathcal{F}\right\}$.] (5 points)

Task 2. Find the PDE that is satisfied for functions $f(x, t)$ that make $\{f(B(t), t)-$ $\left.B(t)^{4}\right\}_{t \geq 0}$ a martingale. Also, give an example of such a function $f(x, t)$. (5 points)

Task 3. Let $X(t)$ solve the SDE $d X(t)=\mu(X(t)) d t+\sigma(X(t)) d B(t)$ where $\mu: \mathbb{R} \rightarrow \mathbb{R}$ and $\sigma: \mathbb{R} \rightarrow(0, \infty)$ are continuous. It is possible to find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $Y(t)=f(X(t))$ satisfies the $\operatorname{SDE} d Y(t)=\hat{\sigma}(Y(t)) d B(t)$ for some new diffusion coefficient function $\hat{\sigma}: \mathbb{R} \rightarrow(0, \infty)$. Find f and $\hat{\sigma}$. (5 points)

Task 4. Given constants $\mu, \sigma \in \mathbb{R}$, find the solution to the PDE
$\frac{\partial f}{\partial t}+\mu x \frac{\partial f}{\partial x}+\frac{\sigma^{2} x^{2}}{2} \frac{\partial^{2} f}{\partial x^{2}}=f(x, t)$ for $t \in[0, T]$ and $x>0, \quad f(x, T)=\ln (x) . \quad(5$ points)
Task 5. Consider the $\operatorname{SDE} d X(t)=-\alpha X(t) d t+\sigma d B(t)$ for $t \geq 0$, for some constants $\alpha \in \mathbb{R}$ and $\sigma>0$. If you are given an observation $\{X(t)\}_{t \in[0, T]}$ of the solution, how can it be used to estimate α and σ (when you do not know their values)? (5 points)

Task 6. For a general SDE $d X(t)=\mu(X(t), t) d t+\sigma(X(t), t) d B(t), t \in[0, T]$, with $X(0)=x_{0}$, consider the half implicit Euler scheme $\hat{Y}\left(t_{0}\right)=x_{0}$ and

$$
\begin{aligned}
& \hat{Y}\left(t_{i}\right) \\
= & \hat{Y}\left(t_{i-1}\right)+\frac{\left.\mu\left(\hat{Y}\left(t_{i-1}\right), t_{i-1}\right)+\mu\left(\hat{Y}\left(t_{i}\right), t_{i}\right)\right)}{2}\left(t_{i}-t_{i-1}\right)+\frac{\sigma\left(\hat{Y}\left(t_{i-1}\right), t_{i-1}\right)+\sigma\left(\hat{Y}\left(t_{i}\right), t_{i}\right)}{2}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)
\end{aligned}
$$

for $i=1, \ldots, n$, with $0=t_{0}<t_{1}<\ldots<t_{n}=T$. For which $\operatorname{SDE} d Y(t)=\hat{\mu}(Y(t), t) d t$ $+\hat{\sigma}(Y(t), t) d B(t)$ is $\left\{\hat{Y}\left(t_{i}\right)\right\}_{i=0}^{n}$ a numerical approximation of $\left\{Y\left(t_{i}\right)\right\}_{i=0}^{n}$? (5 points)

TMS165/MSA350 Stochastic Calculus Solutions to Written Exam 21 August 2020

Task 1. $\mathbf{E}\left\{\mathbf{1}_{A}(Y)\left[\int_{-\infty}^{\infty} x f_{X, Y}(x, Y) / f_{Y}(Y) d x\right]\right\}=\int_{-\infty}^{\infty} \mathbf{1}_{A}(y)\left[\int_{-\infty}^{\infty} x f_{X, Y}(x, y) d x\right] d y=$ $\mathbf{E}\left\{\mathbf{1}_{A}(Y) X\right\}$ for $A \in \mathcal{F}$.

Task 2. According to Corollary 6.4 in Klebaner's book $g(X(t), t)=f(X(t), t)-X(t)^{4}$ with $X(t)=B(t)$ is a martingale when $L_{t} g(x, t)+\frac{\partial g}{\partial t}=\frac{1}{2} \frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial g}{\partial t}=\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}-6 x^{2}+\frac{\partial f}{\partial t}$ $=0$. This PDE is satisfied, e.g., for $f(x, t)=x^{4}$ giving $X(t)=B(t)^{4}$. (But there are also other more complicated solutions.)

Task 3. As $d f(X(t))=f^{\prime}(X(t))(\mu(X(t)) d t+\sigma(X(t)) d B(t))+\frac{1}{2} f^{\prime \prime}(X(t)) \sigma(X(t))^{2} d t$ gives $f^{\prime}(x) \mu(x)+\frac{1}{2} f^{\prime \prime}(x) \sigma(x)^{2}=0$ we take $f(x)=\int \exp \left\{-\int_{x_{0}}^{x} 2 \mu(y) / \sigma(y)^{2} d y\right\} d x$ and $\hat{\sigma}(Y(t))=f^{\prime}(X(t)) \sigma(X(t))=\exp \left\{-\int_{x_{0}}^{f^{-1}(Y(t))} 2 \mu(y) / \sigma(y)^{2} d y\right\} \sigma\left(f^{-1}(Y(t))\right)$.

Task 4. With $X(t)=x_{0} \mathrm{e}^{\left(\mu-\frac{1}{2} \sigma^{2}\right) t+\sigma B(t)}$ the solution to the $\operatorname{SDE} d X(t)=\mu X(t) d t+$ $\sigma X(t) d B(t), X(t)=x_{0}$, Feynman-Kac formula gives

$$
f(x, t)=\mathbf{E}\left\{\mathrm{e}^{-(T-t)} \ln (X(T)) \mid X(t)=x\right\}=\mathrm{e}^{-(T-t)}\left(\ln (x)+\left(\mu-\frac{1}{2} \sigma^{2}\right)(T-t)\right) .
$$

Task 5. See Example 10.5 in Klebaner's book as well as Patrik's lecture notes on applications for estimation of α. As for estimation of σ we have $[X, X](t)=\sigma^{2} t$ so that $\sum_{i=1}^{n}\left(X\left(t_{i}\right)-X\left(t_{i-1}\right)\right)^{2} \approx \sigma^{2} T$ for a tight grid $0=t_{0}<t_{1}<\ldots<t_{n}=T$, giving $\hat{\sigma}^{2}=\frac{1}{T} \sum_{i=1}^{n}\left(X\left(t_{i}\right)-X\left(t_{i-1}\right)\right)^{2}$.

Task 6. By basic stochastic calculus the half implicit scheme adds $\frac{1}{2} \int_{0}^{t} \sigma(Y(s), s) \times$ $\sigma^{\prime}(Y(s), s) d s$ to the solution as compared with the "unbiased" explicit Euler scheme. Hence the half implicit scheme is a numerical approximation of the solution to the SDE

$$
d Y(t)=\left(\mu(Y(t), t)+\frac{1}{2} \sigma(Y(t), t) \sigma^{\prime}(Y(t), t)\right) d t+\sigma(Y(t), t) d B(t) .
$$

