1 Preliminaries from Calculus

1.1 Variation of a Function

Definition 1.1. The <u>variation</u> $V_g([a, b])$ of a function $g : [a, b] \to \mathbb{R}$ over the interval [a, b] is defined as

$$V_g([a,b]) = \lim \left\{ \sum_{i=1}^n |g(t_i^n) - g(t_{i-1}^n)| : a = t_0^n < t_1^n < \dots < t_n^n = b, \ n \in \mathbb{N}, \max_{1 \le i \le n} t_i^n - t_{i-1}^n \downarrow 0 \right\}$$

whenever the $limit^1$ exists.

When $V_g([a, b]) < \infty$ we say that g has <u>finite variation (FV)</u>.

Functions and random processes in stochastic calculus are always either (at least) continuous from the right with existing left limits (cádlág²) or continuous from the left with existing right limits (cáglád) and therefore have a well-defined variation³.

For a function $g: [0, \infty) \to \mathbb{R}$ we use the short-hand notation $V_g(t)$ for $V_g([0, t])$.

Theorem 1.2. 1. $V_g([a,c]) = V_g([a,b]) + V_g([b,c])$ for $a \le b \le c$,

- 2. $V_q([a, t])$ is an increasing function of $t \ge a$,
- 3. $V_g([a, b]) \le V_g([c, d])$ for $[a, b] \subseteq [c, d]$,
- 4. $V_g([a,b]) \ge |g(a) g(b)|$ with equality if and only if g is monotone,
- 5. $V_g(t) = \sum_{0 \le s \le t} |\Delta g(s)|$ for a pure jump function $g(t) = \sum_{0 \le s \le t} \Delta g(s)$,
- 6. $V_g([a,b]) = \int_a^b |g'(t)| dt$ for $g: [a,b] \to \mathbb{R}$ continuously differentiable,

7. g is FV if and only a difference between two increasing functions.

A continuous function need not be FV: For example, the stochastic process Brownian motion we Chapter 3 is continuous but has infinite variation over each interval.

Proof. 1. Follows noting that it is no restriction to assume that b is a member of the meshes $a = t_0^n < t_1^n < \ldots < t_n^n = c$ used to compute $V_g([a, c])$.

2-5. 2-3 follow from 1 while 4-5 are obvious from the definition.

6. By the mean value theorem together with Riemann sum approximation we have

¹If you wonder a little about the limit you are right: This actually is so called net convergence. ²Continuite á droit, limite á gauche.

³Prove cádlág implies uniform right continuity and use this to show the limit equals sup of the same thing.

$$V_g([a,b]) = \lim \sum_{i=1}^n |g(t_i^n) - g(t_{i-1}^n)| = \lim \sum_{i=1}^n |g'(s_i^n)| (t_i^n - t_{i-1}^n) = \int_a^b |g'(t)| dt$$

for some $s_i^n \in [t_{i-1}^n, t_i^n]$, with the limit as $a = t_0^n < t_1^n < \ldots < t_n^n = b$ and $\max_{1 \le i \le n} t_i^n - t_{i-1}^n \downarrow 0$. 7. If g is the difference between two increasing function $g(t) = i_1(t) - i_2(t)$ we have

$$\sum_{i=1}^{n} |g(t_i^n) - g(t_{i-1}^n)| \le \sum_{i=1}^{n} \left((i_1(t_i^n) - i_1(t_{i-1}^n)) + (i_2(t_i^n) - i_2(t_{i-1}^n)) \right) = (i_1(b) - i_1(a)) + (i_2(b) - i_2(a)).$$

If on the other hand $V_g([a, b]) < \infty$, then we have $g(t) = V_g([a, t]) - (V_g([a, t]) - g(t))$ where $V_g([a, t])$ is increasing by 2 and where by 4, for $a \le s \le t$,

 $(V_g([a,t]) - g(t)) - (V_g([a,s]) - g(s)) = V_g([s,t]) - (g(t) - g(s)) \ge V_g([s,t]) - |g(t) - g(s)|. \quad \Box$

1.2 Quadratic Variation of a Function

Definition 1.3. The <u>quadratic covariation</u> or simply <u>covariation</u> [f, g]([a, b])

between two functions $f, g: [a, b] \to \mathbb{R}$ over the interval [a, b] is defined as

$$\lim \left\{ \sum_{i=1}^{n} (f(t_{i}^{n}) - f(t_{i-1}^{n})) \left(g(t_{i}^{n}) - g(t_{i-1}^{n}) \right) : a = t_{0}^{n} < t_{1}^{n} < \dots < t_{n}^{n} = b, \ n \in \mathbb{N}, \max_{1 \le i \le n} t_{i}^{n} - t_{i-1}^{n} \downarrow 0 \right\}$$

whenever the limit exists.

The quadratic variation of $g: [a, b] \to \mathbb{R}$ is [g]([a, b]) = [g, g]([a, b]).

Functions and random processes in stochastic calculus always have a well-defined covariation⁴.

We use the short-hand notation [f,g](t) for [f,g]([0,t]) and [g](t) for [g]([0,t]).

Theorem 1.4. If one of $f, g : [a, b] \to \mathbb{R}$ is continuous and the other is FV then [f, g]([a, b]) = 0.

In particular [g]([a,b]) = 0 if $g: [a,b] \to \mathbb{R}$ is continuous and FV.

Proof. For f continuous and g FV the uniform continuity of f gives

$$\left|\sum_{i=1}^{n} (f(t_{i}^{n}) - f(t_{i-1}^{n})) \left(g(t_{i}^{n}) - g(t_{i-1}^{n})\right)\right| \leq \max_{1 \leq i \leq n} |f(t_{i}^{n}) - f(t_{i-1}^{n})| \sum_{i=1}^{n} |g(t_{i}^{n}) - g(t_{i-1}^{n})| \to 0 \cdot V_{g}([a, b]).$$

Covariation is an inner product and a positive semi-definite symmetric bilinear form. Therefore it has the same properties as covariance:

⁴The proof involves advanced martingale theory and (although big words :)) cannot be made at home.

Theorem 1.5. 1. $[g]([a,b]) \ge 0$ (positivity), 2. [f,g]([a,b]) = [g,f]([a,b]) (symmetry), 3. $[\alpha f_1 + \beta f_2, g]([a,b]) = \alpha [f_1,g]([a,b]) + \beta [f_2,g]([a,b])$ (linearity), 4. $[f,g]([a,b]) = \frac{1}{2}([f+g]([a,b]) - [f]([a,b]) - [g]([a,b]))$ (polarization), 5. $[f,g]([a,b]) = \frac{1}{4}([f+g]([a,b]) - [f-g]([a,b]))$ (polarization), 6. $|[f,g]([a,b])| \le \sqrt{[f]([a,b])[g]([a,b])}$ (Cauchy-Schwarz inequality).

Proof. 1-5. By inspection of the definitions.

6. Proved in the same way as the corresponding statement for covariances and variances. \Box

1.3 Riemann-Stieltjes Integral

Definition 1.6. The Riemann-Stieltjes (RS) integral $\int_a^b f(t) dg(t)$ of a continuous function $f:[a,b] \to \mathbb{R}$ wrt. an FV function $g:[a,b] \to \mathbb{R}$ is defined as $\lim \left\{ \sum_{i=1}^n f(s_i^n) \left(g(t_i^n) - g(t_{i-1}^n) \right) : a = t_0^n < t_1^n < \ldots < t_n^n = b, \ s_i^n \in [t_{i-1}^n, t_i^n], \ n \in \mathbb{N}, \max_{1 \le i \le n} t_i^n - t_{i-1}^n \downarrow 0 \right\}.$

Under the stated conditions on f and g the above limit exists⁵.

The ordinary Riemann integral is the special case of the RS integral with g(x) = x. This can be viewed as the Euclidian case while more general (than linear) choices of g corresponds to a non-Euclidian measure of (possibly signed) length g(t) - g(s) of intervals $[s, t] \subseteq [a, b]$.

Theorem 1.7. 1. For both f and g continuous and FV we have

$$\int_{a}^{b} f \, dg + \int_{a}^{b} g \, df = f(b)g(b) - f(a)g(a) \qquad \text{(integration by parts)}.$$

2. For f continuous and g continuously differentiable we have

$$\int_a^b f \, dg = \int_a^b f(t) \, \frac{dg}{dt} \, dt = \int_a^b f(t) \, g'(t) \, dt$$

3. For f continuously differentiable and g continuous and FV we have

$$\int_{a}^{b} f'(g(t)) \, dg(t) = \int_{g(a)}^{g(b)} f'(s) \, ds = f(g(b)) - f(g(a)) \quad \text{(change of variable)}.$$

 $Proof. \ 1. \ \int_{a}^{b} f \, dg + \int_{a}^{b} g \, df \leftarrow \sum_{i=1}^{n} f(t_{i-1}^{n}) \left(g(t_{i}^{n}) - g(t_{i-1}^{n})\right) + \sum_{i=1}^{n} g(t_{i}^{n}) \left(f(t_{i}^{n}) - f(t_{i-1}^{n})\right)$

 $^{^{5}}$ Argue as in the proof of Theorem 1.4 to see that the limsup and liminf are equal and most be finite.

$$=\sum_{i=1}^{n} (f(t_i^n)g(t_i^n) - f(t_{i-1}^n)g(t_{i-1}^n)) = f(b)g(b) - f(a)g(a).$$

2. By the mean value theorem and Riemann sum approximation as in 6 of Theorem 1.2. 3. For g continuously differentiable this follows from 2 and elementary inner derivative formula. By approximation with continuously differentiable functions (e.g., by convolution smoothing) this carries over to a more general continuous FV g.

The RS integral also includes the concept of sum: To see this note that

$$\sum_{i=1}^{n} a_i = \int_{1/2}^{n+1/2} f \, dg$$

for any continuous f with $f(i) = a_i$ and $g(t) = \lfloor t \rfloor = i - 1$ for $t \in [i - 1, i)$, for $i = 1, \ldots, n + 1$.

RS integrals are extended to infinite intervals as this is done for Riemann integrals.