
1 Preliminaries from Calculus

1.1 Variation of a Function

Definition 1.1. The variation Vg([a, b]) of a function g : [a, b]→ R over the

interval [a, b] is defined as

Vg([a, b]) = lim
{ n∑

i=1

|g(tni )−g(tni−1)| : a= tn0 < tn1 < . . . < tnn = b, n ∈N, max
1≤i≤n

tni−tni−1 ↓ 0
}

whenever the limit1 exists.

When Vg([a, b]) <∞ we say that g has finite variation (FV).

Functions and random processes in stochastic calculus are always either (at least) con-

tinuous from the right with existing left limits (cádlág2) or continuous from the left with

existing right limits (cáglád) and therefore have a well-defined variation3.

For a function g : [0,∞)→ R we use the short-hand notation Vg(t) for Vg([0, t]).

Theorem 1.2. 1. Vg([a, c]) = Vg([a, b]) + Vg([b, c]) for a≤ b≤ c,

2. Vg([a, t]) is an increasing function of t ≥ a,

3. Vg([a, b]) ≤ Vg([c, d]) for [a, b] ⊆ [c, d],

4. Vg([a, b]) ≥ |g(a)− g(b)| with equality if and only if g is monotone,

5. Vg(t) =
∑

0≤s≤t
|∆g(s)| for a pure jump function g(t) =

∑
0≤s≤t

∆g(s),

6. Vg([a, b]) =
∫ b

a
|g′(t)| dt for g : [a, b]→ R continuously differentiable,

7. g is FV if and only a difference between two increasing functions.

A continuous function need not be FV: For example, the stochastic process Brownian

motion we Chapter 3 is continuous but has infinite variation over each interval.

Proof. 1. Follows noting that it is no restriction to assume that b is a member of the meshes

a= tn0 < tn1 < . . . < tnn = c used to compute Vg([a, c]).

2-5. 2-3 follow from 1 while 4-5 are obvious from the definition.

6. By the mean value theorem together with Riemann sum approximation we have

1If you wonder a little about the limit you are right: This actually is so called net convergence.
2Continuite á droit, limite á gauche.
3Prove cádlág implies uniform right continuity and use this to show the limit equals sup of the same thing.
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Vg([a, b]) = lim
n∑

i=1

|g(tni )− g(tni−1)| = lim
n∑

i=1

|g′(sni )| (tni − tni−1) =
∫ b

a
|g′(t)| dt

for some sni ∈ [tni−1, t
n
i ], with the limit as a= tn0 < tn1 < . . . < tnn = b and max

1≤i≤n
tni − tni−1 ↓ 0.

7. If g is the difference between two increasing function g(t) = i1(t)− i2(t) we have

n∑
i=1

|g(tni )−g(tni−1)| ≤
n∑

i=1

(
(i1(t

n
i )−i1(tni−1))+(i2(t

n
i )−i2(tni−1))

)
= (i1(b)−i1(a))+(i2(b)−i2(a)).

If on the other hand Vg([a, b]) < ∞, then we have g(t) = Vg([a, t]) − (Vg([a, t]) − g(t))

where Vg([a, t]) is increasing by 2 and where by 4, for a≤ s≤ t,

(Vg([a, t])− g(t))− (Vg([a, s])− g(s)) = Vg([s, t])− (g(t)−g(s)) ≥ Vg([s, t])− |g(t)−g(s)|. �

1.2 Quadratic Variation of a Function

Definition 1.3. The quadratic covariation or simply covariation [f, g]([a, b])

between two functions f, g : [a, b]→ R over the interval [a, b] is defined as

lim
{ n∑

i=1

(f(tni )−f(tni−1)) (g(tni )−g(tni−1)) : a= tn0 < tn1 < . . . < tnn = b, n ∈N, max
1≤i≤n

tni−tni−1 ↓ 0
}

whenever the limit exists.

The quadratic variation of g : [a, b]→ R is [g]([a, b]) = [g, g]([a, b]).

Functions and random processes in stochastic calculus always have a well-defined covari-

ation4.

We use the short-hand notation [f, g](t) for [f, g]([0, t]) and [g](t) for [g]([0, t]).

Theorem 1.4. If one of f, g : [a, b]→ R is continuous and the other is FV

then [f, g]([a, b]) = 0.

In particular [g]([a, b]) = 0 if g : [a, b]→ R is continuous and FV.

Proof. For f continuous and g FV the uniform continuity of f gives∣∣∣ n∑
i=1

(f(tni )−f(tni−1))(g(tni )−g(tni−1))
∣∣∣≤ max

1≤i≤n
|f(tni )−f(tni−1)|

n∑
i=1

|g(tni )−g(tni−1)| → 0 · Vg([a, b]).
�

Covariation is an inner product and a positive semi-definite symmetric bilinear form.

Therefore it has the same properties as covariance:

4The proof involves advanced martingale theory and (although big words :) ) cannot be made at home.
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Theorem 1.5. 1. [g]([a, b]) ≥ 0 (positivity),

2. [f, g]([a, b]) = [g, f ]([a, b]) (symmetry),

3. [α f1 + β f2, g]([a, b]) = α [f1, g]([a, b]) + β [f2, g]([a, b]) (linearity),

4. [f, g]([a, b]) = 1
2

(
[f+g]([a, b])−[f ]([a, b])−[g]([a, b])

)
(polarization),

5. [f, g]([a, b]) = 1
4

(
[f + g]([a, b])− [f − g]([a, b])

)
(polarization),

6. |[f, g]([a, b])| ≤
√

[f ]([a, b]) [g]([a, b]) (Cauchy-Schwarz inequality).

Proof. 1-5. By inspection of the definitions.

6. Proved in the same way as the corresponding statement for covariances and variances. �

1.3 Riemann-Stieltjes Integral

Definition 1.6. The Riemann-Stieltjes (RS) integral
∫ b

a
f(t) dg(t) of a cont-

inuous function f : [a, b]→R wrt. an FV function g : [a, b]→R is defined as

lim
{ n∑

i=1

f(sni )(g(tni )−g(tni−1)) : a= tn0<t
n
1<. . .<t

n
n =b, sni ∈ [tni−1, t

n
i ], n∈N, max

1≤i≤n
tni−tni−1 ↓0

}
.

Under the stated conditions on f and g the above limit exists5.

The ordinary Riemann integral is the special case of the RS integral with g(x) = x. This

can be viewed as the Euclidian case while more general (than linear) choices of g corresponds

to a non-Euclidian measure of (possibly signed) length g(t)− g(s) of intervals [s, t] ⊆ [a, b].

Theorem 1.7. 1. For both f and g continuous and FV we have∫ b

a
f dg +

∫ b

a
g df = f(b)g(b)−f(a)g(a) (integration by parts).

2. For f continuous and g continuously differentiable we have∫ b

a
f dg =

∫ b

a
f(t) dg

dt
dt =

∫ b

a
f(t) g′(t) dt.

3. For f continuously differentiable and g continuous and FV we have∫ b

a
f ′(g(t)) dg(t) =

∫ g(b)

g(a)
f ′(s) ds = f(g(b))−f(g(a)) (change of variable).

Proof. 1.
∫ b

a
f dg +

∫ b

a
g df ←

n∑
i=1

f(tni−1) (g(tni )− g(tni−1)) +
n∑

i=1

g(tni ) (f(tni )− f(tni−1))

5Argue as in the proof of Theorem 1.4 to see that the limsup and liminf are equal and most be finite.
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=
n∑

i=1

(f(tni )g(tni )− f(tni−1)g(tni−1)) = f(b)g(b)− f(a)g(a).

2. By the mean value theorem and Riemann sum approximation as in 6 of Theorem 1.2.

3. For g continuously differentiable this follows from 2 and elementary inner derivative

formula. By approximation with continuously differentiable functions (e.g., by convolution

smoothing) this carries over to a more general continuous FV g. �

The RS integral also includes the concept of sum: To see this note that

n∑
i=1

ai =
∫ n+1/2

1/2
f dg

for any continuous f with f(i) = ai and g(t) = btc = i−1 for t ∈ [i−1, i), for i = 1, . . . , n+1.

RS integrals are extended to infinite intervals as this is done for Riemann integrals.
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