1 Preliminaries from Calculus

1.1 Variation of a Function

Definition 1.1. The variation $V_{g}([a, b])$ of a function $g:[a, b] \rightarrow \mathbb{R}$ over the interval $[a, b]$ is defined as
$V_{g}([a, b])=\lim \left\{\sum_{i=1}^{n}\left|g\left(t_{i}^{n}\right)-g\left(t_{i-1}^{n}\right)\right|: a=t_{0}^{n}<t_{1}^{n}<\ldots<t_{n}^{n}=b, n \in \mathbb{N}, \max _{1 \leq i \leq n} t_{i}^{n}-t_{i-1}^{n} \downarrow 0\right\}$
whenever the limit ${ }^{1}$ exists.
When $V_{g}([a, b])<\infty$ we say that g has finite variation (FV).

Functions and random processes in stochastic calculus are always either (at least) continuous from the right with existing left limits (cádlág${ }^{2}$) or continuous from the left with existing right limits (cáglád) and therefore have a well-defined variation ${ }^{3}$.

For a function $g:[0, \infty) \rightarrow \mathbb{R}$ we use the short-hand notation $V_{g}(t)$ for $V_{g}([0, t])$.
Theorem 1.2. 1. $V_{g}([a, c])=V_{g}([a, b])+V_{g}([b, c])$ for $a \leq b \leq c$,
2. $V_{g}([a, t])$ is an increasing function of $t \geq a$,
3. $V_{g}([a, b]) \leq V_{g}([c, d])$ for $[a, b] \subseteq[c, d]$,
4. $V_{g}([a, b]) \geq|g(a)-g(b)|$ with equality if and only if g is monotone,
5. $V_{g}(t)=\sum_{0 \leq s \leq t}|\Delta g(s)|$ for a pure jump function $g(t)=\sum_{0 \leq s \leq t} \Delta g(s)$,
6. $V_{g}([a, b])=\int_{a}^{b}\left|g^{\prime}(t)\right| d t$ for $g:[a, b] \rightarrow \mathbb{R}$ continuously differentiable,
7. g is FV if and only a difference between two increasing functions.

A continuous function need not be FV: For example, the stochastic process Brownian motion we Chapter 3 is continuous but has infinite variation over each interval.

Proof. 1. Follows noting that it is no restriction to assume that b is a member of the meshes $a=t_{0}^{n}<t_{1}^{n}<\ldots<t_{n}^{n}=c$ used to compute $V_{g}([a, c])$.

2-5. 2-3 follow from 1 while 4-5 are obvious from the definition.
6. By the mean value theorem together with Riemann sum approximation we have

[^0]$$
V_{g}([a, b])=\lim \sum_{i=1}^{n}\left|g\left(t_{i}^{n}\right)-g\left(t_{i-1}^{n}\right)\right|=\lim \sum_{i=1}^{n}\left|g^{\prime}\left(s_{i}^{n}\right)\right|\left(t_{i}^{n}-t_{i-1}^{n}\right)=\int_{a}^{b}\left|g^{\prime}(t)\right| d t
$$
for some $s_{i}^{n} \in\left[t_{i-1}^{n}, t_{i}^{n}\right]$, with the limit as $a=t_{0}^{n}<t_{1}^{n}<\ldots<t_{n}^{n}=b$ and $\max _{1 \leq i \leq n} t_{i}^{n}-t_{i-1}^{n} \downarrow 0$.
7. If g is the difference between two increasing function $g(t)=i_{1}(t)-i_{2}(t)$ we have
$\sum_{i=1}^{n}\left|g\left(t_{i}^{n}\right)-g\left(t_{i-1}^{n}\right)\right| \leq \sum_{i=1}^{n}\left(\left(i_{1}\left(t_{i}^{n}\right)-i_{1}\left(t_{i-1}^{n}\right)\right)+\left(i_{2}\left(t_{i}^{n}\right)-i_{2}\left(t_{i-1}^{n}\right)\right)\right)=\left(i_{1}(b)-i_{1}(a)\right)+\left(i_{2}(b)-i_{2}(a)\right)$.
If on the other hand $V_{g}([a, b])<\infty$, then we have $g(t)=V_{g}([a, t])-\left(V_{g}([a, t])-g(t)\right)$ where $V_{g}([a, t])$ is increasing by 2 and where by 4 , for $a \leq s \leq t$, $\left(V_{g}([a, t])-g(t)\right)-\left(V_{g}([a, s])-g(s)\right)=V_{g}([s, t])-(g(t)-g(s)) \geq V_{g}([s, t])-|g(t)-g(s)|$.

1.2 Quadratic Variation of a Function

Definition 1.3. The quadratic covariation or simply covariation $[f, g]([a, b])$
between two functions $f, g:[a, b] \rightarrow \mathbb{R}$ over the interval $[a, b]$ is defined as
$\lim \left\{\sum_{i=1}^{n}\left(f\left(t_{i}^{n}\right)-f\left(t_{i-1}^{n}\right)\right)\left(g\left(t_{i}^{n}\right)-g\left(t_{i-1}^{n}\right)\right): a=t_{0}^{n}<t_{1}^{n}<\ldots<t_{n}^{n}=b, n \in \mathbb{N}, \max _{1 \leq i \leq n} t_{i}^{n}-t_{i-1}^{n} \downarrow 0\right\}$ whenever the limit exists.

The quadratic variation of $g:[a, b] \rightarrow \mathbb{R}$ is $[g]([a, b])=[g, g]([a, b])$.

Functions and random processes in stochastic calculus always have a well-defined covariation ${ }^{4}$.

We use the short-hand notation $[f, g](t)$ for $[f, g]([0, t])$ and $[g](t)$ for $[g]([0, t])$.

Theorem 1.4. If one of $f, g:[a, b] \rightarrow \mathbb{R}$ is continuous and the other is FV then $[f, g]([a, b])=0$.

In particular $[g]([a, b])=0$ if $g:[a, b] \rightarrow \mathbb{R}$ is continuous and FV .

Proof. For f continuous and g FV the uniform continuity of f gives

$$
\left|\sum_{i=1}^{n}\left(f\left(t_{i}^{n}\right)-f\left(t_{i-1}^{n}\right)\right)\left(g\left(t_{i}^{n}\right)-g\left(t_{i-1}^{n}\right)\right)\right| \leq \max _{1 \leq i \leq n}\left|f\left(t_{i}^{n}\right)-f\left(t_{i-1}^{n}\right)\right| \sum_{i=1}^{n}\left|g\left(t_{i}^{n}\right)-g\left(t_{i-1}^{n}\right)\right| \rightarrow 0 \cdot V_{g}([a, b]) .
$$

Covariation is an inner product and a positive semi-definite symmetric bilinear form. Therefore it has the same properties as covariance:

[^1]Theorem 1.5. 1. $[g]([a, b]) \geq 0$
2. $[f, g]([a, b])=[g, f]([a, b])$
3. $\left[\alpha f_{1}+\beta f_{2}, g\right]([a, b])=\alpha\left[f_{1}, g\right]([a, b])+\beta\left[f_{2}, g\right]([a, b])$
4. $[f, g]([a, b])=\frac{1}{2}([f+g]([a, b])-[f]([a, b])-[g]([a, b])) \quad$ (polarization),
5. $[f, g]([a, b])=\frac{1}{4}([f+g]([a, b])-[f-g]([a, b])) \quad$ (polarization),
6. $|[f, g]([a, b])| \leq \sqrt{[f]([a, b])[g]([a, b])} \quad$ (Cauchy-Schwarz inequality).

Proof. 1-5. By inspection of the definitions.
6. Proved in the same way as the corresponding statement for covariances and variances.

1.3 Riemann-Stieltjes Integral

Definition 1.6. The Riemann-Stieltjes (RS) integral $\int_{a}^{b} f(t) d g(t)$ of a continuous function $f:[a, b] \rightarrow \mathbb{R}$ wrt. an FV function $g:[a, b] \rightarrow \mathbb{R}$ is defined as $\lim \left\{\sum_{i=1}^{n} f\left(s_{i}^{n}\right)\left(g\left(t_{i}^{n}\right)-g\left(t_{i-1}^{n}\right)\right): a=t_{0}^{n}<t_{1}^{n}<\ldots<t_{n}^{n}=b, s_{i}^{n} \in\left[t_{i-1}^{n}, t_{i}^{n}\right], n \in \mathbb{N}, \max _{1 \leq i \leq n} t_{i}^{n}-t_{i-1}^{n} \downarrow 0\right\}$. Under the stated conditions on f and g the above limit exists ${ }^{5}$.

The ordinary Riemann integral is the special case of the RS integral with $g(x)=x$. This can be viewed as the Euclidian case while more general (than linear) choices of g corresponds to a non-Euclidian measure of (possibly signed) length $g(t)-g(s)$ of intervals $[s, t] \subseteq[a, b]$.

Theorem 1.7. 1. For both f and g continuous and FV we have

$$
\int_{a}^{b} f d g+\int_{a}^{b} g d f=f(b) g(b)-f(a) g(a) \quad \text { (integration by parts). }
$$

2. For f continuous and g continuously differentiable we have

$$
\int_{a}^{b} f d g=\int_{a}^{b} f(t) \frac{d g}{d t} d t=\int_{a}^{b} f(t) g^{\prime}(t) d t .
$$

3. For f continuously differentiable and g continuous and FV we have

$$
\int_{a}^{b} f^{\prime}(g(t)) d g(t)=\int_{g(a)}^{g(b)} f^{\prime}(s) d s=f(g(b))-f(g(a)) \quad \text { (change of variable). }
$$

Proof. 1. $\int_{a}^{b} f d g+\int_{a}^{b} g d f \leftarrow \sum_{i=1}^{n} f\left(t_{i-1}^{n}\right)\left(g\left(t_{i}^{n}\right)-g\left(t_{i-1}^{n}\right)\right)+\sum_{i=1}^{n} g\left(t_{i}^{n}\right)\left(f\left(t_{i}^{n}\right)-f\left(t_{i-1}^{n}\right)\right)$

[^2]$$
=\sum_{i=1}^{n}\left(f\left(t_{i}^{n}\right) g\left(t_{i}^{n}\right)-f\left(t_{i-1}^{n}\right) g\left(t_{i-1}^{n}\right)\right)=f(b) g(b)-f(a) g(a) .
$$
2. By the mean value theorem and Riemann sum approximation as in 6 of Theorem 1.2.
3. For g continuously differentiable this follows from 2 and elementary inner derivative formula. By approximation with continuously differentiable functions (e.g., by convolution smoothing) this carries over to a more general continuous FV g.

The RS integral also includes the concept of sum: To see this note that

$$
\sum_{i=1}^{n} a_{i}=\int_{1 / 2}^{n+1 / 2} f d g
$$

for any continuous f with $f(i)=a_{i}$ and $g(t)=\lfloor t\rfloor=i-1$ for $t \in[i-1, i)$, for $i=1, \ldots, n+1$.
RS integrals are extended to infinite intervals as this is done for Riemann integrals.

[^0]: ${ }^{1}$ If you wonder a little about the limit you are right: This actually is so called net convergence.
 ${ }^{2}$ Continuite á droit, limite á gauche.
 ${ }^{3}$ Prove cádlág implies uniform right continuity and use this to show the limit equals sup of the same thing.

[^1]: ${ }^{4}$ The proof involves advanced martingale theory and (although big words :)) cannot be made at home.

[^2]: ${ }^{5}$ Argue as in the proof of Theorem 1.4 to see that the limsup and liminf are equal and most be finite.

