1 Preliminaries from Calculus

1.1 Variation of a Function

Definition 1.1. The variation Vi ([a, b]) of a function g : [a, b] — R over the

interval [a, b] is defined as
Vyla, b)) = tim{ Slg(t)—g(#,)| s a =t <t < ... <tn=b, neN, max £~ L0}
=1 <i<n

whenever the limit! exists.

When Vi ([a,b]) < co we say that g has finite variation (F'V).

Functions and random processes in stochastic calculus are always either (at least) con-

tinuous from the right with existing left limits (cadldg?) or continuous from the left with

existing right limits (c4gldd) and therefore have a well-defined variation?.

For a function g : [0, 00) — R we use the short-hand notation V,(t) for V,([0,¢]).

Theorem 1.2. 1. Vy([a.d]) = Vy(la,b]) + Vi([b.c]) for a<b<c.
2. V,([a,t]) is an increasing function of t > a,
3. Vy((a.8)) < Vi(le.d)) for [a,8] C [c.d]
4. Vy([a,b]) > |g(a) — g(b)| with equality if and only if ¢ is monotone,

5. V,(t) = > |Ag(s)| for a pure jump function g(t) = > Ag(s),
0<s<t 0<s<t
6. Vy([a,b]) = fab |g'(t)| dt for g : [a,b] — R continuously differentiable,

7. g is FV if and only a difference between two increasing functions.

A continuous function need not be FV: For example, the stochastic process Brownian

motion we Chapter 3 is continuous but has infinite variation over each interval.

Proof. 1. Follows noting that it is no restriction to assume that b is a member of the meshes

a=ty <ty < ...<tl=cused to compute Vy([a,c]).

2-5. 2-3 follow from 1 while 4-5 are obvious from the definition.

6.

By the mean value theorem together with Riemann sum approximation we have

'If you wonder a little about the limit you are right: This actually is so called net convergence.
2Continuite 4 droit, limite 4 gauche.

3Prove cadldg implies uniform right continuity and use this to show the limit equals sup of the same thing.



vg<[a,b]>:nm:zl|g<t?> <t¢1>|—hm2|g< M —ty) = [119/0)] dt

1=

for some s € [t? |, t"], with the limit as a =1t <t} < ... <t =0b and max tr—tr ] 0.

7. If g is the difference between two increasing function g(t) = i;(t) — i5(t) we have

n

Yo lg(th) =gt )] < i((il(t?)—il(t?_l))Jr(12(75")—22(?5@ 1)) = (i1(b)—ir(a)) + (i2(b) —ia(a)).

i=1
If on the other hand V([a,b]) < oo, then we have g(t) = V,([a,t]) — (V,([a,t]) — g(t))
where V;([a, t]) is increasing by 2 and where by 4, for a < s <t,

(Vo(la, 1)) —g(t)) = (Vg(la, s]) — g(s)) = Vy([s, 1)) — (9(t) —g(s)) = Vy([s,t]) = g(t) —g(s)]. O
1.2 Quadratic Variation of a Function

Definition 1.3. The quadratic covariation or simply covariation [f, g](|a, b])

between two functions f, g : [a,b] — R over the interval [a, b] is defined as

tim{ 35(F () (7)) (989t s a =15 <# < ... <£2=b e N, max fi—17, L0}
=1 <i<n

whenever the limit exists.

The quadratic variation of g : [a,b] — R is [g]([a, b]) = [g, 9]([a, b]).

Functions and random processes in stochastic calculus always have a well-defined covari-

ation?.

We use the short-hand notation [f, g](¢) for [f, g]([0,t]) and [¢](t) for [¢]([0,]).

Theorem 1.4. If one of f, g : [a,b] — R is continuous and the other is FV

then [f, g]([a, b]) = 0.
In particular [g]([a,b]) = 0 if ¢ : [a,b] — R is continuous and FV.

Proof. For f continuous and g F'V the uniform continuity of f gives

n

2 (fE) = f(t1)) (9(t) —g(ti1))| < max [f(#7)— f(t?_l)\é\g(t?)—g(t?_l)\—>0'V9([a,b])-

= 1<i<n
U

Covariation is an inner product and a positive semi-definite symmetric bilinear form.

Therefore it has the same properties as covariance:

4The proof involves advanced martingale theory and (although big words :)) cannot be made at home.



Theorem 1.5. 1. [g]([a,b]) >0 (positivity),

2. [f,9](la, 0]) = [g, f1([a, b]) (symmetry),

3. [ fi+ B f2, 9)([a, b]) = a[f1, 9]([a, 0]) + B [f2, 9] ([a, b]) (linearity),
4. [f,9)([a,b]) = 3 ([f+9](la, b)) = [f)([a, b)) —[g]([a, B])) ~ (polarization),
5. [f, gl([a,b]) = 3 ([f + gl(a.,b]) — [f — g]([a,b])) (polarization),
6. (£, 9)([a,bD)] < v/[f]([a. 8]) [9)([a,b]) ~ (Cauchy-Schwarz inequality).

Proof. 1-5. By inspection of the definitions.

6. Proved in the same way as the corresponding statement for covariances and variances. [

1.3 Riemann-Stieltjes Integral

Definition 1.6. The Riemann-Stieltjes (RS) integral fab f(t)dg(t) of a cont-

inuous function f: [a,b] — R wrt. an FV function ¢ : [a,b] — R is defined as

lim{ Y2 F(s7) (g(t7)-g(t))) s a=t <t <. <ti=b, sP €[t 1, t7], nEN, max 247,10},
i=1 sisn

Under the stated conditions on f and g the above limit exists®.
The ordinary Riemann integral is the special case of the RS integral with g(z) = x. This
can be viewed as the Euclidian case while more general (than linear) choices of g corresponds

to a non-Euclidian measure of (possibly signed) length ¢(t) — g(s) of intervals [s,t] C [a, b].

Theorem 1.7. 1. For both f and g continuous and FV we have
Jo fdg+ [, gdf = f(B)g(b)~f(a)g(a)  (integration by parts).
2. For f continuous and ¢ continuously differentiable we have
Ji £dg = [ £(t) G de = [} 1(t)g'(t) dt.
3. For f continuously differentiable and g continuous and FV we have
I F(g(t) dg(t) = [25) '(s)ds = f(g(b))—f(g(a))  (change of variable).

n

Proof. 1. [* fdg+ [’ gdf + éf(t?_o (g(t7) — gt 1)) + 32 g(tr) (f(t7) — f(tey))

i=1

5Argue as in the proof of Theorem 1.4 to see that the limsup and liminf are equal and most be finite.



= é(f(t?)g(t?) — f(ti)g(ti ) = f(0)g(b) — f(a)g(a).

2. By the mean value theorem and Riemann sum approximation as in 6 of Theorem 1.2.

3. For g continuously differentiable this follows from 2 and elementary inner derivative
formula. By approximation with continuously differentiable functions (e.g., by convolution

smoothing) this carries over to a more general continuous FV g. U
The RS integral also includes the concept of sum: To see this note that
L n+1/2
>0 =Jj3 P dg

for any continuous f with f(i) = a; and g(t) = [t] =i—1fort € [i—1,i),fori =1,...,n+1.

RS integrals are extended to infinite intervals as this is done for Riemann integrals.



