
2 Concepts of Probability Theory

2.1 Probability

The sample space Ω is a non-empty set that models the possible outcomes of a random

experiment. Elements ω of Ω are called outcomes.

Definition 2.1. A family F of subsets of Ω is called a σ-field if

• Ω ∈ F ,

• A ∈ F ⇒ Ac ∈ F ,

• A1, A2, . . . ∈ F ⇒
⋃∞
n=1An ∈ F .

Members of F are called measurable sets or events and the pair (Ω,F)

is called a measurable space.

An event happens when we do the random experiment if the outcome ω of the random

experiment is a member of the event.

Theorem 2.2. 1. ∅ ∈ F ,

2. A1, A2, . . . ∈ F ⇒
⋂∞
i=1Ai ∈ F ,

3. A1, . . . , An ∈ F ⇒
⋃n
i=1Ai ∈ F ,

4. A1, . . . , An ∈ F ⇒
⋂n
i=1Ai ∈ F ,

5. A,B ∈ F ⇒ A \B ∈ F .

Proof. Simple exercises. �

Intersections of σ-fields are σ-fields. Unions of σ-fields are usually not σ-fields but (us-

ing closedness under intersections) there is a smallest σ-field denoted
∨
α∈AFα containing⋃

α∈AFα called the σ-field generated by {Fα}α∈A. Likewise, for a family G of subsets of Ω

there is a smallest σ-field σ(G) containing the family called the σ-field generated by G.1

Example 2.1. 1. {∅,Ω} is a σ-field,

2. the family of all subsets of Ω is a σ-field,

3. {∅, A,Ac,Ω} is a σ-field for any A ⊆ Ω.

1Simple exercises.
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Definition 2.3. The σ-field B of subsets of R generated by all intervals is

called the Borel σ-field.

Definition 2.4. A probability measure P on a measureable space (Ω,F) is

a function P : F → [0, 1] such that

• P{Ω} = 1,

• P{Ac} = 1−P{A} for A ∈ F ,

• P{
⋃∞
n=1 An} =

∑∞
n=1 P{An} for disjoint A1, A2, . . . ∈ F .

The triple (Ω,F , P ) is called a probability space.

Theorem 2.5. 1. P{∅} = 0,

2. P{A ∪B} = P{A}+ P{B} −P{A ∩B} for A,B ∈ F ,

3. P{A \B} = P{A} −P{B} for F 3 B ⊆ A ∈ F ,

4. P{
⋃N
n=1 An} =

∑N
n=1 P{An} for disjoint A1, . . . , AN ∈ F ,

5. P{
⋃∞
n=1 An} = limn→∞P{An} for A1, A2, . . . ∈F with A1 ⊆A2 ⊆ . . . ,

6. P{
⋂∞
n=1 An} = limn→∞P{An} for A1, A2, . . . ∈F with A1 ⊇A2 ⊇ . . . .

Proof. 1-4. Simple exercises.

5. Taking B1 = A1 and Bn = An \ An−1 for n ≥ 2 we have
⋃∞
n=1An =

⋃∞
n=1Bn with

B1, B2, . . . ∈ F disjoint so that, as N →∞,

P{
⋃∞
n=1An} = P{

⋃∞
n=1Bn} =

∑∞
n=1P{Bn} = P{AN}+

∑∞
n=N+1P{Bn} → limN→∞P{AN}.

6. Using 5 we get

P{
⋂∞
n=1An} = 1−P{

⋃∞
n=1A

c
n} = 1− limn→∞P{Acn} = limn→∞P{An}. �

Definition 2.6. A random variable X is a function X : Ω→ R such that

{X ∈ B} = {ω ∈ Ω : X(ω) ∈ B} = X−1(B) ∈ F for B ∈ B.

A random variable X is also called a measurable function from Ω to R.

Theorem 2.7. A function X : Ω→ R is a random variable if and only if

{X ≤ x} = {ω ∈ Ω : X(ω) ≤ x} = X−1((−∞, x]) ∈ F for x ∈ R.
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Hence the CDF FX(x) = P{X ≤ x} is always well-defined.

Proof. The family of sets B∈B such that {X∈B} ∈ F is a σ-field and σ({X≤x}x∈R)= B.�

Finite algebraic operations with random variables remain random variables. Point wise

limits of random variables and the decomposition g(X) of a B-measurable function g : R→ R

with a random variable X are random variables. In particular the decomposition g(X) of a

continuous function g : R→ R with a random variable X is a random variable.2

Definition 2.8. The σ-field σ(X) generated by a random variable X is the

sub-σ-field X−1(B) to F .

σ(X) is the smallest σ-field of subsets of Ω that X is measurable wrt.

σ-fields have an information interpretation: To know which of the events in F that

happen when the random experiment is carried out means that we know the value of all

random variables. To know which of the events in σ(X) that happen for a random variable

X when the random experiment is carried out means that we know the value of X.

Example 2.2. (Bernoulli random variable) The simplest non-trivial

random variable is the indicator 1A of an A ∈ F \{∅,Ω} given by 1A(ω) = 1

for ω ∈ A and 1A(ω) = 0 for ω ∈ Ac. Clearly, σ(IA) = {∅, A,Ac,Ω}.

2.2 Expectation

The Lebesgue integral of f : [a, b] → R is done by dividing the range of f -values in small

y-subintervals. The approximate value of the integral is the sum of the length of each x-

interval for which f(x) takes values in one of the y-subintervals times the lower endpoint of

the corresponding y-subinterval. On paper:∫
[a,b]

f(x) dx←
n∑
i=1

length({x ∈ [a, b] : f(x) ∈ [yni−1, y
n
i )}) yni−1

where min(f) = yn0 < yn1 < . . . < ynn = max(f) and max1≤i≤n y
n
i − yni−1 ↓ 0.

Now f could have an infinite range of values. And we want the approximating sum (unlike

approximating Riemann sums) to always converges. Also, we want to be able to integrate

over abstract spaces (Ω,F), not just (R,B). And we are interested in random variables X

and their expectation E{X} rather than math functions f and their integral
∫

Ω
f dP .

2Useful exercises.
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We first define E{X} for X ≥ 0 and then E{X} = E{X+} −E{X−} in the general case

whenever at least one of E{X+} and E{X−} are finite. The definition for X ≥ 0 is

E{X} = lim
n→∞

2nn−1∑
k=0

k
2n

P
{
X ∈ [ k

2n
, k+1

2n
)
}

= lim
n→∞

2nn−1∑
k=0

k
2n

P
{
ω ∈Ω : X(ω) ∈ [ k

2n
, k+1

2n
)
}
. (?)

The limit exists (although possibly is infinite) as the sum increases with n.

Theorem 2.9. 1. E{Y } ≥ E{X} if Y ≥ X (positivity),

2. E{αX+β Y } = αE{X}+β E{Y } (linearity),

3. E{g(X)} ≥ g(E{X}) for g : R→ R convex (Jensen’s inequality),

4. if Xn ≥ 0 and Xn ↑ X (pointwise) then limn→∞E{Xn} = E{X}

(monotone convergence),

5. E{lim infn→∞Xn} ≤ lim infn→∞E{Xn} if Xn ≥ 0 (Fatou’s lemma),

6. if Xn → X (pointwise) and E{supn≥1 |Xn|} <∞ then limn→∞E{Xn}

= E{X} (dominated convergence).

Proof. 1-2. By inspection of (?).

3. By convexity g(x) ≥ a+ b x for x ∈ R with equality for x = E{X}, for some a, b ∈ R, so

E{g(X)} ≥ E{a+ bX} = a+ bE{X} = g(E{X}). :)

4. For E{X} = 0 the claim is trivial.

For E{X} ∈ (0,∞) take ε ≥ 0 and set An = {ω ∈Ω : X−Xn ≥ ε}. Then

E{X} = E{Xn}+ E{1An(X−Xn)}+ E{1Ac
n
(X−Xn)} ≤ E{Xn}+ E{1AnX}+ ε,

where Q{An} = E{1AnX}/E{X} ↓ 0 as n→∞ by 6 in Theorem 2.5 as A1 ⊇ A2 ⊇ . . . with

∩∞n=1An = ∅. Hence lim infn→∞E{Xn} ≥ E{X} − ε for each ε ≥ 0.

For E{X} =∞ take N > 0 and chose an n ∈ N such that the sum in (?) is greater than

N . Then 5 in Theorem 2.6 shows that P
{
Xm ∈ [ k

2n
, k+1

2n
)
}
↑ P

{
X ∈ [ k

2n
, k+1

2n
)
}

as m → ∞

for k = 0, . . . , 2nnn−1 so that also the sum in (?) with X replaced by Xm is greater than N

for m large enough. Hence lim infm→∞E{Xm} > N for each N > 0.

5. As infk≥nXk(ω) ↑ lim infk→∞Xk(ω) as n→∞ 4 shows that

E{lim infk→∞Xk} = limn→∞E{infk≥nXk} = lim infn→∞E{infk≥nXk} ≤ lim infn→∞E{Xn}.

6. Write Y = supn≥1 |Xn| and note that by 2 and 3
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lim sup
n→∞

|E{Xn} − E{X}| ≤ lim sup
n→∞

E{|Xn−X|} = E{2Y } − lim inf
n→∞

E{2Y −|Xn−X|}.

Here the right hand side is at most E{2Y } − E{lim infn→∞(2Y −|Xn−X|)} = 0 by 5. �3

The expectation is also denoted
∫
ω∈Ω

X(ω) dP (ω) indicating that we move over different

outcomes ω in Ω, check the value X(ω) of the random variable, weigh with how likely dP(ω)

the outcome ω is, and sum up to get the expectation (average value).

Our presentation carries over to any measurable function f : Ω → R from a measurable

space (Ω,F) with a (not necessarily total mass 1) measure P: We build our expectation

E{X} =
∫

Ω
X dP =

∫
ω∈Ω

X(ω) dP(ω)

in the same way as the math integral
∫

Ω
f dP when f and P do not come from probability.

A random variable is called simple if a linear combination of Bernoulli random variables

X(ω) =
n∑
i=1

ai1Ai
(ω)

where A1, . . . , An ∈ F are disjoint and a1, . . . , an ∈ R. This readily gives

E(X) =
n∑
i=1

aiP{X ∈ Ai}.

Any X ≥ 0 can be approximated by simple Xn ≥ 0 with Xn(ω) ↑ X(ω) as n→∞: E.g.,

Xn(ω) =
2nn−1∑
k=0

k
2n

1[ k
2n
, k+1
2n

)(X(ω)).

By monotone convergence E{X} = limn→∞E{Xn} for any simple sequence Xn ≥ 0 with

Xn ↑ X ≥ 0. So we can define the expectation for simple random variables and then extend

it to positive random variable by approximating from below with positive simple ones.

A random variable X generates a so called Stieltjes probability measure dFX on (R,B)

by dFX(B) = P{X ∈ B} for B ∈ B. Note that dFX((−∞, x]) = FX(x).

Theorem 2.10. For a random variable X and a measurable g : R→ R we

have E{g(X)} =
∫∞
−∞ g(x) dFX(x) whenever the expectation is well-defined.

Note that Theorem 1.8 is for ALL random variables – continuous, discrete and others.

Proof.4 As E{1[−N,N ](X)g(X)} → E{g(X)} as N → ∞ by 6 in Theorem 2.9 we need only

do the proof for X ∈ [−N,N ]. Taking sni , t
n
i ∈ [ i−1

2n
, i

2n
] such that g(sni ) = minx∈[ i−1

2n
, i
2n

] g(x)

3The proof illustrates that 4-6 are more less the same and are close to the third axiom in Defintion 2.4.
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and g(tni ) = maxx∈[ i−1
2n

, i
2n

] g(x) for i ∈ {−N2n + 1, . . . , N2n} and n ∈ N we have

E{g(X)}


≤

N2n∑
i=−N2n+1

g(tni ) P
{
X∈( i−1

2n
, i

2n
]
}

=
N2n∑

i=−N2n+1

g(tni )
(
FX( i

2n
)−FX( i−1

2n
)
)

≥
N2n∑

i=−N2n+1

g(sni ) P
{
X∈( i−1

2n
, i

2n
]
}

=
N2n∑

i=−N2n+1

g(sni )
(
FX( i

2n
)−FX( i−1

2n
)
) .

Here the upper and lower bounds differ by at most supi∈{−N2n+1,...,N2n} supx,y∈[ i−1
2n

, i
2n

] |g(y)−

g(x)| → 0 as n→∞ by uniform continuity so both sums converge to E{g(X)} =
∫∞
−∞ g dFX .�

2.3 Conditional Expectation

Definition 2.11. Let P and Q be probability measures on a measurable

space (Ω,F). We say that Q is absolutely continuous with respect to P

(Q << P) if P{A} = 0⇒ Q{A} = 0 for A ∈ F .

Theorem 2.12. (Radon-Nikodym5) If Q << P then there exists a unique

(except for the values on an event of probability zero) random variable Λ ≥ 0

with E{Λ} = 1 such that

Q{A} = EP{1AΛ} =
∫
A

Λ dP for A ∈ F .

Theorem 2.13. Let X be a random variable on a probability space

(Ω,F ,P) with E(|X|) < ∞. For a sub-σ-field G ⊆ F there exists a unique

G-measurable random variable Y with E{|Y |} <∞ such that

E{1AY } = E{1AX} for A ∈ G.

Proof. As X = X+ − X− it is enough to prove the theorem for non-negative X and set

E{X|G} = E{X+|G} − E{X−|G} afterwards. Now, for X ≥ 0 with E{X} = 0 we see that

Y = 0 works. So assume E{X} > 0 and define a new probability measure

Q{A} = E{1AX}/E{X} for A ∈ G.

Then P{A} = 0⇒ Q{A} = 0 for A ∈ G so that Radon-Nikodym gives

Q{A} = EP{1AΛ} for A ∈ G,

for some G-measurable Λ. And so we may take Y = Λ E{X} as

E{1AX} = Q{A}E{X} = EP{1AΛ}E{X} for A ∈ G. �
4We do the proof for g continuous only to avoid unwanted measure theoretical complications.
5A theorem where functional analysis and integration meet. Cannot be proved at home from scratch.
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Definition 2.14. The random variable Y in Theorem 2.12 is denoted

E{X|G} and called the conditional expectation of X with respect to G.

Conditional probability is defined by P{A|G} = E{IA|G} for A ∈ F .

Unlike naive conditional expectation, the abstract E{X|G} is a random variable.

Definition 2.15. Two σ-fields G1,G2 ⊆ F are independent if

P{X ∈A, Y ∈B} = P{X ∈A}P{Y ∈B} for A ∈ G1 and B ∈ G2.

X is independent of a σ-field G ⊆ F if σ(X) is independent of G.

Theorem 2.16. 1. E{Y |G} ≥ E{X|G} when Y ≥ X (positivity),

2. E{αX+βY |G} = αE{X|G}+ β E{Y |G} (linearity),

3. g(E{X|G}) ≤ E{g(X)|G} when g is convex (Jensen’s inequality),

4. limn→∞E{Xn|G} = E{X|G} when 0 ≤ Xn ↑ X (monotone convergence),

5. E{lim infn→∞Xn|G} ≤ lim infn→∞E{Xn|G} when Xn ≥ 0 (Fatou’s lemma),

6. limn→∞E{Xn|G} = E{X|G} when Xn → X and E{supn≥1 |Xn|} <∞
(dominated convergence),

7. E{X|{∅,Ω}} = E{X},

8. E{E{X|G2}|G1} = E{X|G1} when G1 ⊆ G2 (towering),

9. E{X|G} = E{X} when G and σ(X) are independent,

10. E{E{X|G}} = E{X},

11. E{X|F} = X when X is F -measurable,

12. E{XY |G} = X E{Y |G} when X is G-measurable,

13. E{X|G1∨G2} = E{X|G1} when G2 is independent of σ(X) and G1,

14. E{g(X, Y )|G2} = E{g(X, Y )|G1} when G1 ⊆ G2, X is G1-measurable

and Y is independent of G2,

15. E{g(X, Y )|G} = E{g(x, Y )}
∣∣
x=X

when X is G-measurable and Y is

independent of G.

Proof. 1-6. Proved in the same way as the corresponding properties for usual expectations.
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7-9. Proved in the exercises.

10. Take G1 = {∅,Ω} in 8.

11. By inspection of the definition.

12. Using X = X+ − X− and Y = Y + − Y − as in the proof of Theorem 2.12 it is enough

to do the proof for X, Y ≥ 0. Now, for X, Y ≥ 0 we may approximate X with 0 ≤ Xn ↑ X

as in the definition of the integral with Xn(ω) =
∑n

i=1 ai1Ai
(ω) and Ai ∈ G. For a B ∈ G we

may now use monotone convergence for expectations and conditional expectations together

with 2, 10 and the definition of conditional expectation for Y to obtain

E{1BX E{Y |G}} = lim
n→∞

E
{

1B
n∑
i=1

ai1Ai
E{Y |G}

}
= lim

n→∞

n∑
i=1

aiE{1B1Ai
Y } = E{1BXY }.

13. Since the family of events C ∈ G1∨G2 such that E{1CE{X|G}} = E{1CX} is a σ-field

and σ{A∩B : A ∈ G1, B ∈ G2} = G1∨G2, it is enough to check that E{1A1BE{X|G}} =

E{1A1BX} for A ∈ G1 and B ∈ G2. But by 10 and 12 together with the assumed independence

E{1A1BE{X|G1}}

= E{1BE{1AX|G1}} = E{1B}E{E{1AX|G1}} = E{1B}E{1AX} = E{1B1AX}.

14. The proof requires a bit more technical details about measures than we want to go into.

15. We get E{g(X, Y )|G} = E{g(X, Y )|σ(X)} by 14. Now use that an A ∈ σ(X) satisfies

1A(ω) = 1B(X(ω)) for some B ∈ B to obtain

E
{
1AE{g(x, Y )}

∣∣
x=X

}
=
∫∞
−∞1B(x)E{g(x, Y )} dFX(x)

=
∫∞
−∞1B(x)

(∫∞
−∞g(x, y) dFY (y)

)
dFX(x) = E{1B(X)g(X, Y )}. �

Theorem 2.17. For X and Y continuous random variables with E{|X|} <

∞ and a well-defined conditional density function fX|Y (x|y), the relation

between the naive conditional expectation E{X|Y = y} and the abstract

E{X|σ(Y )} is that E{X|σ(Y )} = g(Y ) where g(y) = E{X|Y = y}.

Proof. We check that g(Y ) works as E{X|σ(Y )} in Definition 2.13: As an A ∈ σ(Y ) satisfies

A = Y −1(B), i.e., 1A(ω) = 1B(Y (ω)) for ω ∈ Ω, for an B ∈ B, we have

E{1A g(Y )} = E
{
1B(Y )

∫∞
−∞ x

fX,Y (x,Y )

fY (Y )
dx
}

=
∫∞
−∞1B(y)

(∫∞
−∞ x

fX,Y (x,y)

fY (y)
dx
)
fY (y) dy = E{1B(Y )X} = E{1AX}.

Here g(Y ) = g ◦Y is σ(Y )-measurable as g (being an integral) is Borel-measurable so that

{g(Y )∈B} = {ω∈Ω : g(Y (ω))∈B} = Y −1(g−1(B)) ∈ σ(Y ) for B⊆R Borel-measurable. �
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