3 Basic Stochastic Processes

3.1 Martingales

Definition 3.1. A stochastic process with parameter set T is a family $X=$ $\{X(t)\}_{t \in T}=\{X(\omega, t)\}_{t \in T}$ of random variables on a probability space (Ω, \mathcal{F}, P).

A sample path of X is the function $X\left(\omega_{0}, \cdot\right): T \rightarrow \mathbb{R}$ for a fixed $\omega_{0} \in \Omega$.

In stochastic calculus we consider processes with (time) parameter set $[0, \infty)$ or $[0, T]$.
We will present some concepts for the parameter set $[0, \infty)$ below but they are rephrased for parameter set $[0, T]$ by obvious modifications.

Definition 3.2. 1. A filtration $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ is an increasing family of σ-fields all contained in \mathcal{F}. When $(\Omega, \mathcal{F}, \mathbf{P})$ is equipped with a filtration we call $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, \mathbf{P}\right)$ a filtered probability space.
2. A stochastic process $\{X(t)\}_{t \geq 0}$ is called adapted to a filtration $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ if $X(t)$ is \mathcal{F}_{t}-measurable for $t \geq 0$.
3. The smallest filtration that $X=\{X(t)\}_{t \geq 0}$ is adapted to is the filtra$\underline{\text { tion generated by } X \text { itself }\left\{\mathcal{F}_{t}^{X}\right\}_{t \geq 0} \text { given by } \mathcal{F}_{t}^{X}=\bigvee_{s \in[0, t]} \sigma(X(s)) . . ~ . . ~ . ~}$

Definition 3.3. Let $\{X(t)\}_{t \geq 0}$ be a stochastic process adapted to $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ such that $\mathbf{E}\{|X(t)|\}<\infty$ for $t \geq 0$. We say that

1. X is a martingale wrt. $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ if $\mathbf{E}\left\{X(t) \mid \mathcal{F}_{s}\right\}=X(s)$ for $s \leq t$,
2. X is a submartingale wrt. $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ if $\mathbf{E}\left\{X(t) \mid \mathcal{F}_{s}\right\} \geq X(s)$ for $s \leq t$,
3. X is a supermartingale wrt. $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ if $\mathbf{E}\left\{X(t) \mid \mathcal{F}_{s}\right\} \leq X(s)$ for $s \leq t$.

Theorem 3.4. 1. (Doob-Lévy martingale) If Y is a random variable with $\mathbf{E}\{|Y|\}<\infty$ then $X(t)=\mathbf{E}\left\{Y \mid \mathcal{F}_{t}\right\}$ for $t \geq 0$ is a martingale.
2. Martingales have constant expectation while submartingales (supermartingales) have increasing (decreasing) expectations.
3. For X a martingale and g a convex function $g(X)$ is a submartingale.
4. A martingale X is a martingale wrt. $\left\{\mathcal{F}_{t}^{X}\right\}_{t \geq 0}$.

Proof. 1. By towering $\mathbf{E}\left\{X(t) \mid \mathcal{F}_{s}\right\}=\mathbf{E}\left\{\mathbf{E}\left\{Y \mid \mathcal{F}_{t}\right\} \mid \mathcal{F}_{s}\right\}=\mathbf{E}\left\{Y \mid \mathcal{F}_{s}\right\}=X(s)$.
2. For a submartingale (supermartingale) positivity and 10 in Theorem 2.14 give $\mathbf{E}\{X(t)\}=$ $\mathbf{E}\left\{\mathbf{E}\left\{X(t) \mid \mathcal{F}_{s}\right\}\right\} \geq(\leq) \mathbf{E}\{X(s)\}$.
3. By Jensen's inequality $\mathbf{E}\left\{g(X(t)) \mid \mathcal{F}_{s}\right\} \geq g\left(\mathbf{E}\left\{X(t) \mid \mathcal{F}_{s}\right\}\right)=g(X(s))$.
4. By towering $\mathbf{E}\left\{X(t) \mid \mathcal{F}_{s}^{X}\right\}=\mathbf{E}\left\{\mathbf{E}\left\{X(t) \mid \mathcal{F}_{s}\right\} \mid \mathcal{F}_{s}^{X}\right\}=\mathbf{E}\left\{X(s) \mid \mathcal{F}_{s}^{X}\right\}=X(s)$ as $\mathcal{F}_{s}^{X} \subseteq \mathcal{F}_{s}$.

3.2 Markov Processes

Definition 3.5. A stochastic process $\{X(t)\}_{t \geq 0}$ is a Markov process if

$$
\mathbf{P}\left\{X(t) \in A \mid \mathcal{F}_{s}^{X}\right\}=\mathbf{P}\{X(t) \in A \mid \sigma(X(s))\} \quad \text { for } 0 \leq s \leq t \text { and } A \in \mathcal{B}
$$

Theorem 3.6. Independent increment processes are Markov processes.
Proof. By 14 in Theorem 2.16

$$
\begin{aligned}
\mathbf{P}\left\{X(t) \in A \mid \mathcal{F}_{s}^{X}\right\} & =\mathbf{E}\left\{\mathbf{1}_{A-X(s)}(X(t)-X(s)) \mid \mathcal{F}_{s}^{X}\right\} \\
& =\mathbf{E}\left\{\mathbf{1}_{A-X(s)}(X(t)-X(s)) \mid \sigma(X(s))\right\}=\mathbf{P}\{X(t) \in A \mid \sigma(X(s))\}
\end{aligned}
$$

Definition 3.7. The transition CDF for a Markov process X is given by

$$
\underline{P(y, t, x, s)}=\mathbf{P}\{X(t) \leq y \mid X(s)=x\} \quad \text { for } 0 \leq s \leq t \text { and } x, y \in \mathbb{R} .
$$

If an accompaning transition PDF $f_{X(t) \mid X(s)}(y \mid x)$ exists it is denoted $\underline{p(y, t, x, s)}$.

Definition 3.8. A Markov processes is time homogeneous if $\underline{P(t, x, y)}=$ $P(y, t+s, x, s)$ and $\underline{p(t, x, y)}=p(y, t+s, x, s)$ do not depend on s.

For a time homogeneous Markov process $\{X(t)\}_{t \geq 0}$ with transition PDF $p(t, x, y)$ the joint PDF of $\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$ for $0 \leq t_{1}<\cdots<t_{n}$ is given by

$$
f_{X\left(t_{1}\right), \ldots, X\left(t_{n}\right)}\left(x_{1}, \ldots, x_{n}\right)=f_{X\left(t_{1}\right)}\left(x_{1}\right) \prod_{i=2}^{n} p\left(t_{i}-t_{i-1}, x_{i-1}, x_{i}\right) \quad \text { for } x_{1}, \ldots, x_{n} \in \mathbb{R}
$$

if $X\left(t_{1}\right)$ has PDF $f_{X\left(t_{1}\right)}$. This is proved for BM (see below) in the exercises but the proof in general is by analogy. See also applied lecture. For $X\left(t_{1}\right)=x_{1}$ non-random we have

$$
f_{X\left(t_{2}\right), \ldots, X\left(t_{n}\right)}\left(x_{2}, \ldots, x_{n}\right)=\prod_{i=2}^{n} p\left(t_{i}-t_{i-1}, x_{i-1}, x_{i}\right) \quad \text { for } x_{2}, \ldots, x_{n} \in \mathbb{R}
$$

3.3 Gaussian Processes

Definition 3.9. A random process $\{X(t)\}_{t \in T}$ is Gaussian (or normal) if, for $a_{1}, \ldots, a_{n} \in \mathbb{R}, t_{1}, \ldots, t_{n} \in T$ and $n \in \mathbb{N}, \sum_{i=1}^{n} a_{i} X\left(t_{i}\right)$ is normal distributed.

A Gaussian process has a normal distributed process value $X(t)$ at each time $t \in T$. But the requirement that a process is Gaussian is a much more demanding requirement than just individual process values being Gaussian: See the exercises for an example.

Here are some important but not very hard to prove facts about Gaussian processes ${ }^{1}$:

- The probability distribution for any vector of $\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$ of Gaussian process values is completely determined by the mean function $T \ni t \curvearrowright \mathbf{E}\{X(t)\} \in \mathbb{R}$ and the covariance function $T \times T \ni(s, t) \curvearrowright \operatorname{Cov}\{X(s), X(t)\} \in \mathbb{R}$ of the process.
- A collection of Gaussian process values with mutual covariances zero are independent.
- A Gaussian process is weak (wide) sense stationary if and only if (strictly) stationary.

3.4 Brownian Motion

Definition 3.10. Brownian motion (BM) (also called Wiener process) is a stochastic process $\{B(t)\}_{t \geq 0}$ with the following properties:

- $B(0)=0$,
- $B(t+s)-B(s)$ is independent of \mathcal{F}_{s}^{B} for $s, t \geq 0$ (independent increments),
- $B(t+s)-B(s)$ is $\mathrm{N}(0, t)$-distributed for $s, t \geq 0$ (stationary increments),
- $\{B(t)\}_{t \geq 0}$ have continuous sample paths (continuity).

BM can also be started at $B(0)=x$ with the other three axioms kept and one writes $\left\{B^{x}(t)\right\}_{t \geq 0}$ for BM started at x. Alternatively one can write $\mathbf{P}_{x}\{B(t) \leq y\}$ for $\mathbf{P}\left\{B^{x}(t) \leq y\right\}$. Probabilities for $\left\{B^{x}(t)\right\}_{t \geq 0}$ coincide with those of $\left\{B^{0}(t)+x\right\}_{t \geq 0}$ - space homogeneity.

There is a tradition to be unspecific about the starting point for BM as well as more general time homogeneous Markov processes. The reason is that the transition probabilities have a live of their own making it meaningful to talk about, for example,

$$
P(y, t, x, s)=P(y, t-s, x, 0)=P(t-s, x, y)
$$

[^0]even if $X(0) \neq x$. This can be less confusing if one is unspecific about the starting point. If in an BM calculation the starting point is needed but not given it is assumed 0 .

Example 3.1. For independent increment processes as BM calculations are often done by expressing things as sums of independent increments: E.g.,

$$
\begin{aligned}
\mathbf{P}\{B(1) \leq x, B(2) \leq y, B(3) \leq z\} & =\mathbf{P}\left\{\xi_{1} \leq x, \xi_{1}+\xi_{2} \leq y, \xi_{1}+\xi_{2}+\xi_{3} \leq z\right\} \\
& =\int_{u=-\infty}^{u=x} \phi(u) \int_{v=-\infty}^{v=y-u} \phi(v) \int_{w=-\infty}^{w=z-u-v} \phi(w) d w d v d u
\end{aligned}
$$

for $x, y, z \in \mathbb{R}$, where ξ_{1}, ξ_{2} and ξ_{3} are independent standard normal.

In a similar fashion it is proven that BM is Gaussian:
Theorem 3.11. BM is zero-mean Gaussian with $\operatorname{Cov}\{B(s), B(t)\}=s \wedge t$.

Proof. $B(t)=(B(t)-B(0))+B(0)=B(t)-B(0)$ is zero-mean $N(0, t)$ with

$$
\operatorname{Cov}\{B(s), B(t)\}=\operatorname{Cov}\{B(s), B(t)-B(s)\}+\operatorname{Cov}\{B(s), B(s)\}=0+\operatorname{Var}\{B(s)\}=s
$$

for $0 \leq s \leq t$ by independent increments. These also imply that
$\sum_{i=1}^{n} a_{i} B\left(t_{i}\right)=\sum_{i=1}^{n}\left(\sum_{j=i}^{n} a_{j}\right)\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)$ for $0=t_{0} \leq t_{1} \leq \ldots \leq t_{n}$ and $a_{1}, \ldots, a_{n} \in \mathbb{R}$ is zero-mean normal with variance $\sum_{i=1}^{n}\left(\sum_{j=i}^{n} a_{i}\right)^{2}\left(t_{i}-t_{i-1}\right)$.

So we can alternatively define BM as zero-mean Gaussian with covariance function $s \wedge t$.

3.5 Variation and Quadratic variation of BM

Theorem 3.12. $V_{B}(t)=\infty$ and $[B](t)=t$ for $t>0$.
Proof. As BM is continuous $[B](t)>0$ gives $V_{B}(t)=\infty$ by Theorem 1.4. Now

$$
\mathbf{E}\left\{\sum_{i=1}^{n}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)^{2}\right\}=\sum_{i=1}^{n} \mathbf{E}\left\{\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)^{2}\right\}=\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=t
$$

for $0=t_{0}<t_{1}<\ldots<t_{n}=t$, while

$$
\begin{aligned}
\operatorname{Var}\left\{\sum_{i=1}^{n}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)^{2}\right\} & =\sum_{i=1}^{n} \operatorname{Var}\left\{\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)^{2}\right\} \\
& =\sum_{i=1}^{n} \operatorname{Var}\left\{\mathrm{~N}\left(0, t_{i}-t_{i-1}\right)^{2}\right\} \\
& =\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{2} \operatorname{Var}\left\{\mathrm{~N}(0,1)^{2}\right\} \leq\left(\max _{1 \leq i \leq n} t_{i}-t_{i-1}\right) t \operatorname{Var}\left\{\mathrm{~N}(0,1)^{2}\right\}
\end{aligned}
$$

3.6 Three Martingales of BM

Theorem 3.13. The following three are martingales wrt. $\left\{\mathcal{F}_{t}^{B}\right\}_{t \geq 0}$:

1. $\{B(t)\}_{t \geq 0}$,
2. $\left\{B(t)^{2}-t\right\}_{t \geq 0}$,
3. $\left\{\mathrm{e}^{u B(t)-u^{2} t / 2}\right\}_{t \geq 0}$ for any $u \in \mathbb{R}$.

Proof. By independence of increments we have, for $0 \leq s \leq t$,

$$
\begin{gathered}
\mathbf{E}\left\{B(t) \mid \mathcal{F}_{s}^{B}\right\}=\mathbf{E}\left\{B(t)-B(s) \mid \mathcal{F}_{s}^{B}\right\}+\mathbf{E}\left\{B(s) \mid \mathcal{F}_{s}^{B}\right\}=\mathbf{E}\{B(t)-B(s)\}+B(s)=0+B(s), \\
\begin{aligned}
\mathbf{E}\left\{B(t)^{2}-t \mid \mathcal{F}_{s}^{B}\right\} & =\mathbf{E}\left\{(B(t)-B(s))^{2} \mid \mathcal{F}_{s}^{B}\right\}+\mathbf{E}\left\{2 B(s)(B(t)-B(s)) \mid \mathcal{F}_{s}^{B}\right\}+\mathbf{E}\left\{B(s)^{2} \mid \mathcal{F}_{s}^{B}\right\}-t \\
& =\mathbf{E}\left\{(B(t)-B(s))^{2}\right\}+2 B(s) \mathbf{E}\left\{B(t-B(s)\}+B(s)^{2}-t\right. \\
& =(t-s)+2 \cdot B(s) \cdot 0+B(s)^{2}-t
\end{aligned} \\
\mathbf{E}\left\{\mathrm{e}^{u B(t)-u^{2} t / 2} \mid \mathcal{F}_{s}^{B}\right\}=\mathrm{e}^{u B(s)-u^{2} t / 2} \mathbf{E}\left\{\mathrm{e}^{u(B(t)-B(s))} \mid \mathcal{F}_{s}^{B}\right\} \\
\quad=\mathrm{e}^{u B(s)-u^{2} t / 2} \mathbf{E}\left\{\mathrm{e}^{u(B(t)-B(s))}\right\}=\mathrm{e}^{u B(s)-u^{2} t / 2} \mathrm{e}^{u^{2}(t-s) / 2}
\end{gathered}
$$

3.7 Markov Property of BM

Theorem 3.14. BM is time homogeneous Markov with transition PDF

$$
p(t, x, y)=\frac{1}{\sqrt{2 \pi t}} \mathrm{e}^{-(y-x)^{2} /(2 t)} \quad \text { for } t>0 \text { and } x, y \in \mathbb{R} .
$$

Proof. By Theorem 3.6 BM is Markov and by inspection of the proof of Theorem 3.6

$$
\begin{aligned}
\mathbf{P}\{B(t+s) \in A \mid B(s)=x\} & =\mathbf{P}\{B(t+s)-B(s) \in A-x\} \\
& =\int_{A-x} \frac{1}{\sqrt{2 \pi t}} \mathrm{e}^{-y^{2} /(2 t)} d y=\int_{A} \frac{1}{\sqrt{2 \pi t}} \mathrm{e}^{-(y-x)^{2} /(2 t)} d y .
\end{aligned}
$$

[^0]: ${ }^{1}$ They belong to a basic stochastic processe course rather than stochastic calculus so are not proved here.

