
4 Brownian Motion Calculus

An ordinary differential equation (ODE) with initial value is given as

x′(t) = µ(x(t), t) for t ∈ [0, T ], x(0) = x0.

Equivalently expressed on differential form as

dx(t) = µ(x(t), t) dt for t ∈ [0, T ], x(0) = x0,

and on integrated form as

x(t) = x0 +
∫ t

0
µ(x(s), s) ds for t ∈ [0, T ].

A stochastic differential equation (SDE) on differential form is given by

dX(t) = µ(X(t), t) dt+ σ(X(t), t) dB(t) for t ∈ [0, T ], X(0) = x0,

where {B(t)}t≥0 is BM. Expressed on integrated form it becomes

X(t) = x0 +
∫ t

0
µ(X(s), s) ds+

∫ t

0
σ(X(s), s) dB(s) for t ∈ [0, T ].

But BM is not FV so that
∫ t

0
. . . dB does not exist as a RS-integral and we need to give

meaning to the so called Itô integral process{∫ t

0
X dB

}
t∈[0,T ]

=
{∫ t

0
X(s) dB(s)

}
t∈[0,T ]

.

This integral does not feature in math but is unique for stochastic calculus.

On Convergence of Random Variables

Definition 4.1. A sequence of random variables {Xn}∞n=1 converges in pro-

bability to X (Xn→P X) if limn→∞P{|Xn−X| > ε} = 0 for each ε > 0.

A sequence of random variables {Xn}∞n=1 converges in p’th mean, p ≥ 1,

to X (Xn→Lp X) if E{|X|p} <∞ and limn→∞E{(Xn−X)p} = 0.

Theorem 4.2. (Cauchy criterion)

1. Xn convereges in probability to some X if and only if limm,n→∞

P{|Xm−Xn| > ε} = 0 for each ε > 0.

2. Xn convereges in p’th mean, p≥ 1, to some X if and only if E{Xp
n} <

∞ for n large enough and limm,n→∞E{(Xm−Xn)p} = 0.
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4.1-4.2 Definition of the Itô Integral and Itô Integral Processes

Henceforth {B(t)}t≥0 is BM and {Ft}≥0 = {FB
t }≥0 the filtration generated by BM itself.

Definition 4.3. A stochastic process {X(t)}t∈[0,T ] is measurable if a mea-

surable function X : Ω× [0, T ]→ R, i.e., X−1(B) ⊆ σ(F × ([0, T ] ∩ B)).

The concept of measurable process is too technical to be fully utilized by us so we just

inform that processes with cádlág, cáglád or continuous sample paths are measurable.

For a measurable process Fubini’s theorem ensures that

E
{∫ T

0
X(t) dt

}
=
∫ T

0
E{X(t)} dt

in the sense that both sides are well-defined simultaneously and when that occur they agree1.

The Itô integral is done in steps for subsequently larger classes of processes ST ⊆ET ⊆ PT :

Definition 4.4. A measurable and adapted process {X(t)}t∈[0,T ] is in

• ST if there exist is a grid 0 = t0 < t1 < . . . < tn = T of (non-random)

times and random variables ξ0, ξ1, . . . , ξn−1 with ξi Fti-measurable and

E(ξ2i ) <∞ for i = 0, . . . , n−1 such that

X(t) = ξ01{0}(t) +
n∑

i=1

ξi−11(ti−1,ti](t) for t ∈ [0, T ],

• ET if E
{∫ T

0
X(t)2 dt

}
<∞,

• PT if P
{∫ T

0
X(t)2 dt <∞

}
= 1.

Definition 4.5. For X ∈ ST the Itô integral process is defined∫ t

0
X dB =

m∑
i=1

ξi−1(B(ti)−B(ti−1)) + ξm(B(t)−B(tm))

for t ∈ (tm, tm+1] and m = 0, . . . , n−1, with
∫ 0

0
X dB = 0. Further,∫ t

s
X dB =

∫ t

0
X dB −

∫ s

0
X dB for 0 ≤ s ≤ t.

When considering the Itô integral process {
∫ t

0
X dB}t∈[0,T ] of X ∈ ST at times s1, . . . , sj ∈

[0, T ] it is no restriction assume that s1, . . . , sj are members of the grid 0 = t0 < t1 < . . . <

tn = T used to define X as otherwise the grid can be enriched to include s1, . . . , sj without

affecting values of X or the Itô integral process. This technique is often useful in proofs.

1Too measure theoretic to be proved by us.
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Theorem 4.6. For X, Y ∈ ST we have

1.
∫ t

0
(αX(s) + β Y (s)) dB(s) = α

∫ t

0
X dB + β

∫ t

0
Y dB,

2.
∫ t

0
1(a,b](s) dB(s) = B(b)−B(a) for (a, b] ⊆ [0, t],

3.
∫ t

0
1(a,b](s)X(s) dB(s) =

∫ b

a
X dB for (a, b] ⊆ [0, t],

4. the Itô integral process {
∫ t

0
X dB}t∈[0,T ] has continuous sample paths,

5. the Itô integral process {
∫ t

0
X dB}t∈[0,T ] is adapted to {Ft}t∈[0,T ],

6. [
∫ t

0
X dB] = [

∫ (·)
0
X dB](t) =

∫ t

0
X(s)2 ds for t ∈ [0, T ],

7. [
∫ t

0
X dB,

∫ t

0
Y dB] =

∫ t

0
X(s)Y (s) ds for t ∈ [0, T ],

8. the Itô integral process {
∫ t

0
X dB}t∈[0,T ] is a martingale wrt. {Ft}t∈[0,T ],

9. E{
∫ t

0
X dB} = 0,

10. E
{

(
∫ t

0
X dB)2

}
= E{

∫ t

0
X(s)2 ds} =

∫ t

0
E{X(s)2} ds (isometry),

11. E{(
∫ t

0
X dB) {(

∫ t

0
Y dB)} = E{

∫ t

0
X(s)Y (s) ds} =

∫ t

0
E{X(s)Y (s)} ds.

Proof. 1-5. By inspection of the definition.

6, 8 and 10. Done in the exercises.

7 and 11. Follows from 6 and 10, respectively by polarization.

9. Follows from 8 as martingales have constant mean. �

Theorem 4.7. For X ∈ET there exists a sequence {Xn}∞n=1 ⊆ ST such that

lim
n→∞

E
{∫ T

0
(Xn(t)−X(t))2 dt

}
= 0.

Proof. For X continuous2: Given ε > 0 we need to prove that

E
{∫ T

0
(Y (t)−X(t))2 dt

}
≤ ε for some Y ∈ ST .

To that end let

X(N)(t) =


−N if X(t) < −N
X(t) if |X(t)| ≤ N

N if X(t) > N

.

Since X(N)(t)−X(t)→ 0 as N →∞ with (X(N)(t)−X(t))2 ≤ X(t)2 we then have

E
{∫ T

0
(X(N)(t)−X(t))2 dt

}
→ 0 as N →∞

2The proof for a general not necessarily continuous X is exceptionally difficult.
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by dominated convergence as X ∈ET . Using the elementary inequality (x+y)2 ≤ 2x2+ 2 y2

it follows that it is enough to prove that, given ε > 0 and N ∈N, we have

E
{∫ T

0
(Y (t)−X(N)(t))2 dt

}
≤ ε for some Y ∈ ST .

But as X(N) is uniformly continuous over [0, T ] the process

Z(n)(t) = 1{0}(t)X
(N)(0) +

n∑
i=1

1(ti−1,ti](t)X
(N)(ti−1) for t ∈ [0, T ]

in ST (where 0 = t0 < t1 < . . . < tn = T as usual) satisfies

sup
t∈[0,T ]

∣∣Z(n)(t)−X(N)(t)
∣∣ ≤ sup

s,t∈[0,T ], |s−t|≤ max
1≤i≤n

ti−ti−1

∣∣X(N)(s)−X(N)(t)
∣∣→ 0

as max1≤i≤n ti−ti−1 ↓ 0. Hence Z(n)(t)−X(N)(t)→ 0 with (Z(n)(t)−X(N)(t))2 ≤ 4N2, so

E
{∫ T

0
(Z(n)(t)−X(N)(t))2 dt

}
→ 0 as max

1≤i≤n
ti−ti−1 ↓ 0

by dominated convergence. So we may pick Y = Z(n) with max1≤i≤n ti−ti−1 small enough.�

Theorem and Definition 4.8. For X ∈ ET the Itô integral process

{
∫ t

0
X dB}t∈[0,T ] is well-defined as a mean-square →L2 limit of

∫ t

0
Xn dB as

n→∞ for t ∈ [0, T ], where {Xn}∞n=1 ⊆ ST are as in the previous theorem.

Proof. We show that {
∫ t

0
Xn dB}∞n=1 is a Cauchy sequence in L2: By isometry for ST

E
{

(
∫ t

0
Xn dB −

∫ t

0
Xm dB)2

}
= E

{
(
∫ t

0
(Xn−Xm) dB)2

}
= E

{∫ t

0
(Xn(t)−Xm(t))2 dt

}
≤ 2 E

{∫ t

0
(Xn(t)−X(t))2 dt

}
+ 2 E

{∫ t

0
(X(t)−Xm(t))2 dt

}
→ 0

as m,n→∞. Now, if also {X̂n}∞n=1 ⊆ ST satisfies

lim
n→∞

E
{∫ T

0
(X̂n(t)−X(t))2 dt

}
= 0,

so that
∫ t

0
X̂n dB converges in mean-square to some limit

∮ t

0
X dB as n→∞, we must show

that
∫ t

0
X dB =

∮ t

0
X dB. However, this follows from noting that

E
{

(
∫ t

0
X dB −

∮ t

0
X dB)2

}
← E

{
(
∫ t

0
Xn dB −

∫ t

0
X̂n dB)2

}
≤ 2 E

{∫ T

0
(Xn(t)−X(t))2 dt

}
+ 2 E

{∫ T

0
(X(t)− X̂n(t))2 dt

}
→ 0.

Here we used the fact that Yn →L2 Y implies E{Y 2
n } → E{Y 2} proved in the exercises. �
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Theorem 4.9. Properties of the Itô integral process {
∫ t

0
X dB}t∈[0,T ] for

X ∈ ET are the same as those for X ∈ ST listed in Theorem 4.6.

Proof. 1 and 3. By inspection of the definition.

4 and 6. Too complicated for us to prove.

5. Follows from that limits of measurable functions are measurable.

7-11. As in the proof of Theorem 4.6. �

Theorem 4.10. 3For X ∈ PT there exists {Xn}∞n=1 ⊆ ET such that∫ T

0
(Xn(t)−X(t))2 dt→P 0 as n→∞.

Theorem and Definition 4.11. 3For X ∈ PT the Itô integral process

{
∫ t

0
X dB}t∈[0,T ] is well-defined as a convergence in probability →P limit of∫ t

0
Xn dB for t ∈ [0, T ], where {Xn}∞n=1 ⊆ET are as in the previous theorem.

Theorem 4.12. The properties 1-7 in Theorem 4.6 hold for the Itô integral

process {
∫ t

0
X dB}t∈[0,T ] with X ∈ PT while properties 8-11 need not hold.

Proof. 1 and 3-7. As for ET .

8-9. In the exercises we encounter a non zero-mean Itô integral process.

10-11. For X ∈ PT \ET we have
∫ T

0
E{X(t)2} dt =∞. �

Theorem 4.13. 3A continuous and adapted {X(t)}t∈[0,T ] is in PT and

sup
t∈[0,T ]

∣∣∣∫ t

0
X dB −

t∫
0

n∑
i=1

X(ti−1)1(ti−1,ti] dB
∣∣∣→P 0

when 0 = t0 < t1 < . . . < tn = T with max1≤i≤n ti − ti−1 ↓ 0. In particular

n∑
i=1

X(tni−1)(B(tni )−B(tni−1))→P

∫ T

0
X dB.

In general the Itô integral is not an RS integral as

n∑
i=1

X(tni ) (B(tni )−B(tni−1))−
n∑

i=1

X(tni−1) (B(tni )−B(tni−1))→ [X,B](T ) 6= 0.

But when X is FV we do however have [X,B](T ) = 0 as BM is continuous.

3Too technical a result for us to prove.
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Example 4.1. (Example 4.3 in Klebaner) For BM itself we have

n∑
i=1

B(tni ) (B(tni )−B(tni−1))−
n∑

i=1

B(tni−1) (B(tni )−B(tni−1))→ [B](T ) = T.

By “twisting”this example a little one deduces that∫ T

0
B dB

←
n∑

i=1

B(tni−1) (B(tni )−B(tni−1))

= 1
2

n∑
i=1

(B(tni ) +B(tni−1)) (B(tni )−B(tni−1))− 1
2

n∑
i=1

(B(tni )−B(tni−1)) (B(tni )−B(tni−1))

→ 1
2
B(T )2 − 1

2
T.

4.3 Itô Integral and Gaussian Processes

For a measurable non-random random process X : [0, T ]→ R (with no dependence on ω ∈ Ω)

we have X ∈ ET if and only if X ∈ PT if and only if
∫ T

0
X(t)2 dt <∞.

Theorem 4.14. For a non-random X : [0, T ] → R with
∫ T

0
X(t)2 dt < ∞

the Itô integral process {
∫ t

0
X dB}t∈[0,T ] is zero-mean Gaussian with

Cov{
∫ s

0
X dB,

∫ t

0
X dB} = E{(

∫ s

0
X dB) (

∫ t

0
X dB)} =

∫ min{s,t}
0

X(r)2 dr.

Proof. Gaussian follows from that limits of Gaussians are Gaussian while zero-mean is by

Theorem 4.9. For 0 ≤ s ≤ t towering, the martingale property and isometry further give

E{(
∫ s

0
X dB) (

∫ t

0
X dB)} = E{(

∫ s

0
X dB) E{

∫ t

0
X dB|Fs}} = E{(

∫ s

0
X dB)2} =

∫ s

0
X(r)2 dr. �

Example 4.2. (Example 4.10 in Klebaner) By Theorem 4.14 Y (t)

=
∫ t

0
s dB(s) is N(0, t3/3) as E{Y (t)2} =

∫ t

0
s2 dt = t3/3.

4.4 Itô’s Formula for BM

Theorem 4.15. (Itô’s formula) For a C2 function f : R→ R we have

f(B(t)) = f(B(0)) +
∫ t

0
f ′(B(s)) dB(s) + 1

2

∫ t

0
f ′′(B(s)) ds.

Itô’s formula is often written on differential form as

df(B(t)) = f ′(B)(t) dB(t) + 1
2
f ′′(B(t)) dt.
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Proof. With 0 = tn0 < tn1 < . . . < tnn = t a second order Taylor expansion gives

f(B(t))− f(B(0))

=
n∑

i=1

(f(B(tni ))− f(B(tni−1)))

=
n∑

i=1

f ′(B(tni−1)) (B(tni )−B(tni−1)) + 1
2

n∑
i=1

f ′′(B(tni−1)) (B(tni )−B(tni−1))
2 + higher order

terms
.

Sending max1≤i≤n t
n
i − tni−1 ↓ 0 the first term on the right-hand side converges to

∫ t

0
f ′(B) dB.

Being more specific with the third term it is not hard to show that it converges to 0. As for

the second sum on the right-hand, that it converges to∫ t

0
f ′′(B(s)) d[B](s) =

∫ t

0
f ′′(B(s)) ds.

follows from that it by continuity of f ′′(B) is asymptotically the same as

n∑
i=1

f ′′(B(smji )) (B(tni )−B(tni−1))
2

for a suitable choice of 0 ≤ j1 ≤ · · · ≤ jn ≤ m, where 0 = sm0 < sm1 < . . . < smm = t is a courser

grid than {tni }ni=0, that is, m ≤ n and {smi }mi=0 ⊆ {tni }ni=0. Now send max1≤i≤n t
n
i − tni−1 ↓ 0

and max1≤i≤m s
m
i − smi−1 ↓ 0 afterwards using [B](t) = t and convergence of Riemann sums.�

Corollary 4.16. 1. dB(t)2 = d[B](t) = dt,

2. dB(t)dt = 0,

3. dt2 = 0.

Example 4.3. (Examples 4.12-13 in Klebaner) For f(x) = xn we get B(t)n = n
∫ t

0
Bn−1(s) dB(s) + n(n−1)

2

∫ t

0
Bn−2(s) ds

d(B(t)n) = nBn−1(t) dB(t) + n(n−1)
2

Bn−2(t) dt

(recovering Example 4.1 with n = 2) while f(x) = ex gives eB(t) = 1 +
∫ t

0
eB(s) dB(s) + 1

2

∫ t

0
eB(s) ds

d(eB(t)) = eB(t) dB(t) + 1
2

eB(t) dt
.
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4.5 Itô Processes and Stochastic Differentials

Definition 4.17. An Itô process is given by

{X(t)}t∈[0,T ] =
{
X(0) +

∫ t

0
µ(s) ds+

∫ t

0
σ(s) dB(s)

}
t∈[0,T ]

whereX(0) is a F0-measurable random variable, µ a measurable and adapted

process with
∫ T

0
|µ(t)| dt <∞ and σ ∈ PT .

A stochastic differential is an Itô process on differential form

dX(t) = µ(t) dt+ σ(t) dB(t).

Itô processes are adapted and continuous. Further X(0) is a constant as long as F0 =

FB
0 = {∅,Ω}. Writing µ = µ+ − µ− we see that {

∫ t

0
µ(s) ds}t∈[0,T ] is FV so that

[X](t) = [
∫ t

0
µ(s) ds+

∫ t

0
σ dB,

∫ t

0
µ(s) ds+

∫ t

0
σ dB] = [

∫ t

0
σ dB] =

∫ t

0
σ(s)2 ds.

Using polarization we find the covariation between two Itô processes X and Y

[X, Y ](t) =
∫ t

0
σX(s)σY (s) ds.

Written on differential form this becomes

dX(t)dY (t) = d[X, Y ](t) = σX(t)σY (t) dt.

The Itô integral of one Itô process X with respect to another Y is defined as∫ t

0
X dY =

∫ t

0
X(s)µY (s) ds+

∫ t

0
X(s)σY (s) dB(s) for t ∈ [0, T ]

when
∫ t

0
|X(s)µY (s)| ds <∞ and XσY ∈ PT . Using X’s continity it can be shown that

n∑
i=1

X(tni−1) (Y (tni )−Y (tni−1))→P

∫ t

0
X dY

for partitions 0 = tn0 < . . . < tnn = t of [0, t] such that max1≤i≤n t
n
i − tni−1 ↓ 0.

Example 4.3. (Continued) B(t)n and eB(t) are Itô processes with stochas-

tic differentialsd(B(t)n) = n(n−1)
2

Bn−2(t) dt+ nBn−1(t) dB(t)

d(eB(t)) = 1
2

eB(t) dt+ eB(t) dB(t)
.

4.6 Itô Formula for Itô processes

By replacing BM with an Itô process X in the derivation of Itô’s formula for BM we get
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f(X(t)) = f(X(0)) +
∫ t

0
f ′(X(s)) dX(s) + 1

2

∫ t

0
f ′′(X(s)) d[X](s)

for f : R→ R that is C2 on the range of values of X. Written out in full detail this becomes

f(X(t)) = f(X(0)) +
∫ t

0

(
f ′(X(s))µX(s) + 1

2
f ′′(X(s))σX(s)2

)
ds+

∫ t

0
f ′(X(s))σX(s) dB(s).

Writing Itô’s formula on differential form we have

df(X(t)) = f ′(X(t)) dX(t) + 1
2
f ′′(X(t)) d[X](t).

For two Itô processes X and Y and a C2 function f : R2 → R we have

df(X(t), Y (t)) =
∂f

∂x
(X(t), Y (t)) dX(t) +

∂f

∂y
(X(t), Y (t)) dY (t)

+
1

2

∂2f

∂x2
(X(t), Y (t)) d[X](t) +

1

2

∂2f

∂y2
(X(t), Y (t)) d[Y ](t)

+
∂2f

∂x∂y
(X(t), Y (t)) d[X, Y ](t).

One interesting application of the bivariate Itô formula is integration by parts

d(X(t)Y (t)) = X(t) dY (t) + Y (t) dX(t) + d[X, Y ](t).

This result can alternatively be established by noting that

n∑
i=1

(X(tni )−X(tni−1)) (Y (tni )−Y (tni−1))

= X(t)Y (t)−X(0)Y (0)−
n∑

i=1

X(tni−1) (Y (tni )−Y (tni−1))−
n∑

i=1

Y (tni−1) (X(tni )−X(tni−1))

for 0 = tn0 < tn1 < . . . < tnn = t and sending max1≤i≤n t
n
i − tni−1 ↓ 0. This integrations by parts

formula is not the same as that for the RS integral which do not have the last term on the

right-hand side (because it vanishes due to the processes involved being FV and continuous).

Another application of the bivariate Itô formula is the special case when Y (t) = t:

df(X(t), t) =
∂f

∂x
(X(t), t) dX(t) +

∂f

∂t
(X(t), t) dt+

1

2

∂2f

∂x2
(X(t), t) d[X](t).

Example 4.4. By the previous Itô formula {f(B(t), t)}t∈[0,T ] is a martingale

when ∂f
∂t

+ 1
2

∂2f
∂x2 = 0 and {∂f

∂x
(B(t), t)}t∈[0,T ] ∈ ET . This recovers the three

martingales of BM in Chapter 3 by inspection.

Example 4.5. (Example 4.23 in Klebaner) For f a C2 function we have

[f(B), B](t) =
∫ t

0
f ′(B(s)) ds

as by Corollary 4.16 d[f(B), B](t) equals

d(f(B(t))dB(t) = (f ′(B)(t) dB(t) + 1
2
f ′′(B(t)) dt) dB(t) = f ′(B)(t) dt.
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