4 Brownian Motion Calculus

An ordinary differential equation (ODE) with initial value is given as

$$
x^{\prime}(t)=\mu(x(t), t) \quad \text { for } t \in[0, T], \quad x(0)=x_{0} .
$$

Equivalently expressed on differential form as

$$
d x(t)=\mu(x(t), t) d t \quad \text { for } t \in[0, T], \quad x(0)=x_{0},
$$

and on integrated form as

$$
x(t)=x_{0}+\int_{0}^{t} \mu(x(s), s) d s \quad \text { for } t \in[0, T] .
$$

A stochastic differential equation (SDE) on differential form is given by

$$
d X(t)=\mu(X(t), t) d t+\sigma(X(t), t) d B(t) \quad \text { for } t \in[0, T], \quad X(0)=x_{0}
$$

where $\{B(t)\}_{t \geq 0}$ is BM. Expressed on integrated form it becomes

$$
X(t)=x_{0}+\int_{0}^{t} \mu(X(s), s) d s+\int_{0}^{t} \sigma(X(s), s) d B(s) \quad \text { for } t \in[0, T] .
$$

But BM is not FV so that $\int_{0}^{t} \ldots d B$ does not exist as a RS-integral and we need to give meaning to the so called Itô integral process

$$
\left\{\int_{0}^{t} X d B\right\}_{t \in[0, T]}=\left\{\int_{0}^{t} X(s) d B(s)\right\}_{t \in[0, T]} .
$$

This integral does not feature in math but is unique for stochastic calculus.

On Convergence of Random Variables

Definition 4.1. A sequence of random variables $\left\{X_{n}\right\}_{n=1}^{\infty}$ converges in probability to $X\left(\underline{X_{n} \rightarrow_{\mathbf{P}} X}\right)$ if $\lim _{n \rightarrow \infty} \mathbf{P}\left\{\left|X_{n}-X\right|>\varepsilon\right\}=0$ for each $\varepsilon>0$.

A sequence of random variables $\left\{X_{n}\right\}_{n=1}^{\infty}$ converges in p^{\prime} th mean, $p \geq 1$, to $X\left(\underline{X_{n} \rightarrow_{\mathbb{L}^{p}} X}\right)$ if $\mathbf{E}\left\{|X|^{p}\right\}<\infty$ and $\lim _{n \rightarrow \infty} \mathbf{E}\left\{\left(X_{n}-X\right)^{p}\right\}=0$.

Theorem 4.2. (CAUCHY CRITERION)

1. X_{n} convereges in probability to some X if and only if $\lim _{m, n \rightarrow \infty}$ $\mathbf{P}\left\{\left|X_{m}-X_{n}\right|>\varepsilon\right\}=0$ for each $\varepsilon>0$.
2. X_{n} convereges in p^{\prime} th mean, $p \geq 1$, to some X if and only if $\mathbf{E}\left\{X_{n}^{p}\right\}<$ ∞ for n large enough and $\lim _{m, n \rightarrow \infty} \mathbf{E}\left\{\left(X_{m}-X_{n}\right)^{p}\right\}=0$.

4.1-4.2 Definition of the Itô Integral and Itô Integral Processes

Henceforth $\{B(t)\}_{t \geq 0}$ is BM and $\left\{\mathcal{F}_{t}\right\}_{\geq 0}=\left\{\mathcal{F}_{t}^{B}\right\}_{\geq 0}$ the filtration generated by BM itself.

Definition 4.3. A stochastic process $\{X(t)\}_{t \in[0, T]}$ is measurable if a measurable function $X: \Omega \times[0, T] \rightarrow \mathbb{R}$, i.e., $X^{-1}(\mathcal{B}) \subseteq \sigma(\mathcal{F} \times([0, T] \cap \mathcal{B}))$.

The concept of measurable process is too technical to be fully utilized by us so we just inform that processes with cádlág, cáglád or continuous sample paths are measurable.

For a measurable process Fubini's theorem ensures that

$$
\mathbf{E}\left\{\int_{0}^{T} X(t) d t\right\}=\int_{0}^{T} \mathbf{E}\{X(t)\} d t
$$

in the sense that both sides are well-defined simultaneously and when that occur they agree ${ }^{1}$.
The Itô integral is done in steps for subsequently larger classes of processes $S_{T} \subseteq E_{T} \subseteq P_{T}$:

Definition 4.4. A measurable and adapted process $\{X(t)\}_{t \in[0, T]}$ is in

- S_{T} if there exist is a grid $0=t_{0}<t_{1}<\ldots<t_{n}=T$ of (non-random) times and random variables $\xi_{0}, \xi_{1}, \ldots, \xi_{n-1}$ with $\xi_{i} \mathcal{F}_{t_{i}}$-measurable and $E\left(\xi_{i}^{2}\right)<\infty$ for $i=0, \ldots, n-1$ such that

$$
X(t)=\xi_{0} \mathbf{1}_{\{0\}}(t)+\sum_{i=1}^{n} \xi_{i-1} \mathbf{1}_{\left(t_{i-1}, t_{i}\right]}(t) \quad \text { for } t \in[0, T],
$$

- E_{T} if $\mathbf{E}\left\{\int_{0}^{T} X(t)^{2} d t\right\}<\infty$,
- P_{T} if $\mathbf{P}\left\{\int_{0}^{T} X(t)^{2} d t<\infty\right\}=1$.

Definition 4.5. For $X \in S_{T}$ the Itô integral process is defined

$$
\int_{0}^{t} X d B=\sum_{i=1}^{m} \xi_{i-1}\left(B\left(t_{i}\right)-B\left(t_{i-1}\right)\right)+\xi_{m}\left(B(t)-B\left(t_{m}\right)\right)
$$

for $t \in\left(t_{m}, t_{m+1}\right]$ and $m=0, \ldots, n-1$, with $\int_{0}^{0} X d B=0$. Further,

$$
\int_{s}^{t} X d B=\int_{0}^{t} X d B-\int_{0}^{s} X d B \quad \text { for } 0 \leq s \leq t .
$$

When considering the Itô integral process $\left\{\int_{0}^{t} X d B\right\}_{t \in[0, T]}$ of $X \in S_{T}$ at times $s_{1}, \ldots, s_{j} \in$ $[0, T]$ it is no restriction assume that s_{1}, \ldots, s_{j} are members of the grid $0=t_{0}<t_{1}<\ldots<$ $t_{n}=T$ used to define X as otherwise the grid can be enriched to include s_{1}, \ldots, s_{j} without affecting values of X or the Itô integral process. This technique is often useful in proofs.

[^0]Theorem 4.6. For $X, Y \in S_{T}$ we have

1. $\int_{0}^{t}(\alpha X(s)+\beta Y(s)) d B(s)=\alpha \int_{0}^{t} X d B+\beta \int_{0}^{t} Y d B$,
2. $\int_{0}^{t} \mathbf{1}_{(a, b]}(s) d B(s)=B(b)-B(a)$ for $(a, b] \subseteq[0, t]$,
3. $\int_{0}^{t} \mathbf{1}_{(a, b]}(s) X(s) d B(s)=\int_{a}^{b} X d B \quad$ for $(a, b] \subseteq[0, t]$,
4. the Itô integral process $\left\{\int_{0}^{t} X d B\right\}_{t \in[0, T]}$ has continuous sample paths,
5. the Itô integral process $\left\{\int_{0}^{t} X d B\right\}_{t \in[0, T]}$ is adapted to $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$,
6. $\left[\int_{0}^{t} X d B\right]=\left[\int_{0}^{(\cdot)} X d B\right](t)=\int_{0}^{t} X(s)^{2} d s$ for $t \in[0, T]$,
7. $\left[\int_{0}^{t} X d B, \int_{0}^{t} Y d B\right]=\int_{0}^{t} X(s) Y(s) d s$ for $t \in[0, T]$,
8. the Itô integral process $\left\{\int_{0}^{t} X d B\right\}_{t \in[0, T]}$ is a martingale wrt. $\left\{\mathcal{F}_{t}\right\}_{t \in[0, T]}$,
9. $\mathbf{E}\left\{\int_{0}^{t} X d B\right\}=0$,
10. $\mathbf{E}\left\{\left(\int_{0}^{t} X d B\right)^{2}\right\}=\mathbf{E}\left\{\int_{0}^{t} X(s)^{2} d s\right\}=\int_{0}^{t} \mathbf{E}\left\{X(s)^{2}\right\} d s \quad$ (isometry),
11. $\mathbf{E}\left\{\left(\int_{0}^{t} X d B\right)\left\{\left(\int_{0}^{t} Y d B\right)\right\}=\mathbf{E}\left\{\int_{0}^{t} X(s) Y(s) d s\right\}=\int_{0}^{t} \mathbf{E}\{X(s) Y(s)\} d s\right.$.

Proof. 1-5. By inspection of the definition.
6,8 and 10 . Done in the exercises.
7 and 11. Follows from 6 and 10, respectively by polarization.
9. Follows from 8 as martingales have constant mean.

Theorem 4.7. For $X \in E_{T}$ there exists a sequence $\left\{X_{n}\right\}_{n=1}^{\infty} \subseteq S_{T}$ such that

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left\{\int_{0}^{T}\left(X_{n}(t)-X(t)\right)^{2} d t\right\}=0
$$

Proof. For X continuous ${ }^{2}$: Given $\varepsilon>0$ we need to prove that

$$
\mathbf{E}\left\{\int_{0}^{T}(Y(t)-X(t))^{2} d t\right\} \leq \varepsilon \quad \text { for some } Y \in S_{T}
$$

To that end let

$$
X^{(N)}(t)=\left\{\begin{array}{ccc}
-N & \text { if } & X(t)<-N \\
X(t) & \text { if } & |X(t)| \leq N \\
N & \text { if } & X(t)>N
\end{array} .\right.
$$

Since $X^{(N)}(t)-X(t) \rightarrow 0$ as $N \rightarrow \infty$ with $\left(X^{(N)}(t)-X(t)\right)^{2} \leq X(t)^{2}$ we then have

$$
\mathbf{E}\left\{\int_{0}^{T}\left(X^{(N)}(t)-X(t)\right)^{2} d t\right\} \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

[^1]by dominated convergence as $X \in E_{T}$. Using the elementary inequality $(x+y)^{2} \leq 2 x^{2}+2 y^{2}$ it follows that it is enough to prove that, given $\varepsilon>0$ and $N \in \mathbb{N}$, we have
$$
\mathbf{E}\left\{\int_{0}^{T}\left(Y(t)-X^{(N)}(t)\right)^{2} d t\right\} \leq \varepsilon \quad \text { for some } Y \in S_{T}
$$

But as $X^{(N)}$ is uniformly continuous over $[0, T]$ the process

$$
Z^{(n)}(t)=\mathbf{1}_{\{0\}}(t) X^{(N)}(0)+\sum_{i=1}^{n} \mathbf{1}_{\left(t_{i-1}, t_{i}\right]}(t) X^{(N)}\left(t_{i-1}\right) \quad \text { for } t \in[0, T]
$$

in S_{T} (where $0=t_{0}<t_{1}<\ldots<t_{n}=T$ as usual) satisfies

$$
\sup _{t \in[0, T]}\left|Z^{(n)}(t)-X^{(N)}(t)\right| \leq \sup _{s, t \in[0, T],|s-t| \leq \max _{1 \leq i \leq n} t_{i}-t_{i-1}}\left|X^{(N)}(s)-X^{(N)}(t)\right| \rightarrow 0
$$

as $\max _{1 \leq i \leq n} t_{i}-t_{i-1} \downarrow 0$. Hence $Z^{(n)}(t)-X^{(N)}(t) \rightarrow 0$ with $\left(Z^{(n)}(t)-X^{(N)}(t)\right)^{2} \leq 4 N^{2}$, so

$$
\mathbf{E}\left\{\int_{0}^{T}\left(Z^{(n)}(t)-X^{(N)}(t)\right)^{2} d t\right\} \rightarrow 0 \quad \text { as } \max _{1 \leq i \leq n} t_{i}-t_{i-1} \downarrow 0
$$

by dominated convergence. So we may pick $Y=Z^{(n)}$ with $\max _{1 \leq i \leq n} t_{i}-t_{i-1}$ small enough. \square

Theorem and Definition 4.8. For $X \in E_{T}$ the Itô integral process $\left\{\int_{0}^{t} X d B\right\}_{t \in[0, T]}$ is well-defined as a mean-square $\rightarrow_{\mathbb{L}^{2}}$ limit of $\int_{0}^{t} X_{n} d B$ as $n \rightarrow \infty$ for $t \in[0, T]$, where $\left\{X_{n}\right\}_{n=1}^{\infty} \subseteq S_{T}$ are as in the previous theorem.

Proof. We show that $\left\{\int_{0}^{t} X_{n} d B\right\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{L}^{2} : By isometry for S_{T}

$$
\begin{aligned}
\mathbf{E}\left\{\left(\int_{0}^{t} X_{n} d B-\int_{0}^{t} X_{m} d B\right)^{2}\right\} & =\mathbf{E}\left\{\left(\int_{0}^{t}\left(X_{n}-X_{m}\right) d B\right)^{2}\right\} \\
& =\mathbf{E}\left\{\int_{0}^{t}\left(X_{n}(t)-X_{m}(t)\right)^{2} d t\right\} \\
& \leq 2 \mathbf{E}\left\{\int_{0}^{t}\left(X_{n}(t)-X(t)\right)^{2} d t\right\}+2 \mathbf{E}\left\{\int_{0}^{t}\left(X(t)-X_{m}(t)\right)^{2} d t\right\} \rightarrow 0
\end{aligned}
$$

as $m, n \rightarrow \infty$. Now, if also $\left\{\hat{X}_{n}\right\}_{n=1}^{\infty} \subseteq S_{T}$ satisfies

$$
\lim _{n \rightarrow \infty} \mathbf{E}\left\{\int_{0}^{T}\left(\hat{X}_{n}(t)-X(t)\right)^{2} d t\right\}=0
$$

so that $\int_{0}^{t} \hat{X}_{n} d B$ converges in mean-square to some limit $\oint_{0}^{t} X d B$ as $n \rightarrow \infty$, we must show that $\int_{0}^{t} X d B=\oint_{0}^{t} X d B$. However, this follows from noting that

$$
\begin{aligned}
\mathbf{E}\left\{\left(\int_{0}^{t} X d B-\oint_{0}^{t} X d B\right)^{2}\right\} & \leftarrow \mathbf{E}\left\{\left(\int_{0}^{t} X_{n} d B-\int_{0}^{t} \hat{X}_{n} d B\right)^{2}\right\} \\
& \leq 2 \mathbf{E}\left\{\int_{0}^{T}\left(X_{n}(t)-X(t)\right)^{2} d t\right\}+2 \mathbf{E}\left\{\int_{0}^{T}\left(X(t)-\hat{X}_{n}(t)\right)^{2} d t\right\} \rightarrow 0
\end{aligned}
$$

Here we used the fact that $Y_{n} \rightarrow_{\mathbb{L}^{2}} Y$ implies $\mathbf{E}\left\{Y_{n}^{2}\right\} \rightarrow \mathbf{E}\left\{Y^{2}\right\}$ proved in the exercises.

Theorem 4.9. Properties of the Itô integral process $\left\{\int_{0}^{t} X d B\right\}_{t \in[0, T]}$ for $X \in E_{T}$ are the same as those for $X \in S_{T}$ listed in Theorem 4.6.

Proof. 1 and 3. By inspection of the definition.
4 and 6. Too complicated for us to prove.
5. Follows from that limits of measurable functions are measurable.

7-11. As in the proof of Theorem 4.6.

Theorem 4.10. ${ }^{3}$ For $X \in P_{T}$ there exists $\left\{X_{n}\right\}_{n=1}^{\infty} \subseteq E_{T}$ such that

$$
\int_{0}^{T}\left(X_{n}(t)-X(t)\right)^{2} d t \rightarrow_{\mathbf{p}} 0 \quad \text { as } n \rightarrow \infty .
$$

Theorem and Definition 4.11. ${ }^{3}$ For $X \in P_{T}$ the Itô integral process $\left\{\int_{0}^{t} X d B\right\}_{t \in[0, T]}$ is well-defined as a convergence in probability $\rightarrow_{\mathbf{P}}$ limit of $\int_{0}^{t} X_{n} d B$ for $t \in[0, T]$, where $\left\{X_{n}\right\}_{n=1}^{\infty} \subseteq E_{T}$ are as in the previous theorem.

Theorem 4.12. The properties 1-7 in Theorem 4.6 hold for the Itô integral process $\left\{\int_{0}^{t} X d B\right\}_{t \in[0, T]}$ with $X \in P_{T}$ while properties 8-11 need not hold.

Proof. 1 and 3-7. As for E_{T}.
8-9. In the exercises we encounter a non zero-mean Itô integral process.
10-11. For $X \in P_{T} \backslash E_{T}$ we have $\int_{0}^{T} \mathbf{E}\left\{X(t)^{2}\right\} d t=\infty$.

Theorem 4.13. ${ }^{3}$ A continuous and adapted $\{X(t)\}_{t \in[0, T]}$ is in P_{T} and

$$
\sup _{t \in[0, T]}\left|\int_{0}^{t} X d B-\int_{0}^{t} \sum_{i=1}^{n} X\left(t_{i-1}\right) \mathbf{1}_{\left(t_{i-1}, t_{i}\right]} d B\right| \rightarrow_{\mathbf{P}} 0
$$

when $0=t_{0}<t_{1}<\ldots<t_{n}=T$ with $\max _{1 \leq i \leq n} t_{i}-t_{i-1} \downarrow 0$. In particular

$$
\sum_{i=1}^{n} X\left(t_{i-1}^{n}\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right) \rightarrow_{\mathbf{P}} \int_{0}^{T} X d B
$$

In general the Itô integral is not an RS integral as

$$
\sum_{i=1}^{n} X\left(t_{i}^{n}\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)-\sum_{i=1}^{n} X\left(t_{i-1}^{n}\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right) \rightarrow[X, B](T) \neq 0
$$

But when X is FV we do however have $[X, B](T)=0$ as BM is continuous.

[^2]Example 4.1. (Example 4.3 in Klebaner) For BM itself we have

$$
\sum_{i=1}^{n} B\left(t_{i}^{n}\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)-\sum_{i=1}^{n} B\left(t_{i-1}^{n}\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right) \rightarrow[B](T)=T
$$

By "twisting" this example a little one deduces that

$$
\begin{aligned}
& \int_{0}^{T} B d B \\
\leftarrow & \sum_{i=1}^{n} B\left(t_{i-1}^{n}\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right) \\
= & \frac{1}{2} \sum_{i=1}^{n}\left(B\left(t_{i}^{n}\right)+B\left(t_{i-1}^{n}\right)\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)-\frac{1}{2} \sum_{i=1}^{n}\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right) \\
\rightarrow & \frac{1}{2} B(T)^{2}-\frac{1}{2} T .
\end{aligned}
$$

4.3 Itô Integral and Gaussian Processes

For a measurable non-random random process $X:[0, T] \rightarrow \mathbb{R}$ (with no dependence on $\omega \in \Omega$) we have $X \in E_{T}$ if and only if $X \in P_{T}$ if and only if $\int_{0}^{T} X(t)^{2} d t<\infty$.

Theorem 4.14. For a non-random $X:[0, T] \rightarrow \mathbb{R}$ with $\int_{0}^{T} X(t)^{2} d t<\infty$ the Itô integral process $\left\{\int_{0}^{t} X d B\right\}_{t \in[0, T]}$ is zero-mean Gaussian with

$$
\operatorname{Cov}\left\{\int_{0}^{s} X d B, \int_{0}^{t} X d B\right\}=\mathbf{E}\left\{\left(\int_{0}^{s} X d B\right)\left(\int_{0}^{t} X d B\right)\right\}=\int_{0}^{\min \{s, t\}} X(r)^{2} d r
$$

Proof. Gaussian follows from that limits of Gaussians are Gaussian while zero-mean is by Theorem 4.9. For $0 \leq s \leq t$ towering, the martingale property and isometry further give $\mathbf{E}\left\{\left(\int_{0}^{s} X d B\right)\left(\int_{0}^{t} X d B\right)\right\}=\mathbf{E}\left\{\left(\int_{0}^{s} X d B\right) \mathbf{E}\left\{\int_{0}^{t} X d B \mid \mathcal{F}_{s}\right\}\right\}=\mathbf{E}\left\{\left(\int_{0}^{s} X d B\right)^{2}\right\}=\int_{0}^{s} X(r)^{2} d r$.

Example 4.2. (Example 4.10 in Klebaner) By Theorem 4.14 $Y(t)$ $=\int_{0}^{t} s d B(s)$ is $\mathrm{N}\left(0, t^{3} / 3\right)$ as $\mathbf{E}\left\{Y(t)^{2}\right\}=\int_{0}^{t} s^{2} d t=t^{3} / 3$.

4.4 Itô's Formula for BM

Theorem 4.15. (Itô's formula) For a C^{2} function $f: \mathbb{R} \rightarrow \mathbb{R}$ we have

$$
f(B(t))=f(B(0))+\int_{0}^{t} f^{\prime}(B(s)) d B(s)+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}(B(s)) d s
$$

Itô's formula is often written on differential form as

$$
d f(B(t))=f^{\prime}(B)(t) d B(t)+\frac{1}{2} f^{\prime \prime}(B(t)) d t .
$$

Proof. With $0=t_{0}^{n}<t_{1}^{n}<\ldots<t_{n}^{n}=t$ a second order Taylor expansion gives

$$
\begin{aligned}
& f(B(t))-f(B(0)) \\
= & \sum_{i=1}^{n}\left(f\left(B\left(t_{i}^{n}\right)\right)-f\left(B\left(t_{i-1}^{n}\right)\right)\right) \\
= & \sum_{i=1}^{n} f^{\prime}\left(B\left(t_{i-1}^{n}\right)\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)+\frac{1}{2} \sum_{i=1}^{n} f^{\prime \prime}\left(B\left(t_{i-1}^{n}\right)\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)^{2}+\begin{array}{c}
\text { higher order } \\
\text { terms }
\end{array}
\end{aligned}
$$

Sending $\max _{1 \leq i \leq n} t_{i}^{n}-t_{i-1}^{n} \downarrow 0$ the first term on the right-hand side converges to $\int_{0}^{t} f^{\prime}(B) d B$. Being more specific with the third term it is not hard to show that it converges to 0 . As for the second sum on the right-hand, that it converges to

$$
\int_{0}^{t} f^{\prime \prime}(B(s)) d[B](s)=\int_{0}^{t} f^{\prime \prime}(B(s)) d s
$$

follows from that it by continuity of $f^{\prime \prime}(B)$ is asymptotically the same as

$$
\sum_{i=1}^{n} f^{\prime \prime}\left(B\left(s_{j_{i}}^{m}\right)\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)^{2}
$$

for a suitable choice of $0 \leq j_{1} \leq \cdots \leq j_{n} \leq m$, where $0=s_{0}^{m}<s_{1}^{m}<\ldots<s_{m}^{m}=t$ is a courser grid than $\left\{t_{i}^{n}\right\}_{i=0}^{n}$, that is, $m \leq n$ and $\left\{s_{i}^{m}\right\}_{i=0}^{m} \subseteq\left\{t_{i}^{n}\right\}_{i=0}^{n}$. Now send $\max _{1 \leq i \leq n} t_{i}^{n}-t_{i-1}^{n} \downarrow 0$ and $\max _{1 \leq i \leq m} s_{i}^{m}-s_{i-1}^{m} \downarrow 0$ afterwards using $[B](t)=t$ and convergence of Riemann sums.

Corollary 4.16. 1. $d B(t)^{2}=d[B](t)=d t$,
2. $d B(t) d t=0$,
3. $d t^{2}=0$.

Example 4.3. (Examples 4.12-13 in Klebaner) For $f(x)=x^{n}$ we get

$$
\left\{\begin{aligned}
B(t)^{n} & =n \int_{0}^{t} B^{n-1}(s) d B(s)+\frac{n(n-1)}{2} \int_{0}^{t} B^{n-2}(s) d s \\
d\left(B(t)^{n}\right) & =n B^{n-1}(t) d B(t)+\frac{n(n-1)}{2} B^{n-2}(t) d t
\end{aligned}\right.
$$

(recovering Example 4.1 with $n=2$) while $f(x)=\mathrm{e}^{x}$ gives

$$
\left\{\begin{array}{rl}
\mathrm{e}^{B(t)} & =1+\int_{0}^{t} \mathrm{e}^{B(s)} d B(s)+\frac{1}{2} \int_{0}^{t} \mathrm{e}^{B(s)} d s \\
d\left(\mathrm{e}^{B(t)}\right) & =\quad \mathrm{e}^{B(t)} d B(t)+\frac{1}{2} \mathrm{e}^{B(t)} d t
\end{array} .\right.
$$

4.5 Itô Processes and Stochastic Differentials

Definition 4.17. An Itô process is given by

$$
\{X(t)\}_{t \in[0, T]}=\left\{X(0)+\int_{0}^{t} \mu(s) d s+\int_{0}^{t} \sigma(s) d B(s)\right\}_{t \in[0, T]}
$$

where $X(0)$ is a \mathcal{F}_{0}-measurable random variable, μ a measurable and adapted process with $\int_{0}^{T}|\mu(t)| d t<\infty$ and $\sigma \in P_{T}$.

A stochastic differential is an Itô process on differential form

$$
d X(t)=\mu(t) d t+\sigma(t) d B(t)
$$

Itô processes are adapted and continuous. Further $X(0)$ is a constant as long as $\mathcal{F}_{0}=$ $\mathcal{F}_{0}^{B}=\{\emptyset, \Omega\}$. Writing $\mu=\mu^{+}-\mu^{-}$we see that $\left\{\int_{0}^{t} \mu(s) d s\right\}_{t \in[0, T]}$ is FV so that

$$
[X](t)=\left[\int_{0}^{t} \mu(s) d s+\int_{0}^{t} \sigma d B, \int_{0}^{t} \mu(s) d s+\int_{0}^{t} \sigma d B\right]=\left[\int_{0}^{t} \sigma d B\right]=\int_{0}^{t} \sigma(s)^{2} d s
$$

Using polarization we find the covariation between two Itô processes X and Y

$$
[X, Y](t)=\int_{0}^{t} \sigma_{X}(s) \sigma_{Y}(s) d s
$$

Written on differential form this becomes

$$
d X(t) d Y(t)=d[X, Y](t)=\sigma_{X}(t) \sigma_{Y}(t) d t
$$

The Itô integral of one Itô process X with respect to another Y is defined as

$$
\int_{0}^{t} X d Y=\int_{0}^{t} X(s) \mu_{Y}(s) d s+\int_{0}^{t} X(s) \sigma_{Y}(s) d B(s) \quad \text { for } t \in[0, T]
$$

when $\int_{0}^{t}\left|X(s) \mu_{Y}(s)\right| d s<\infty$ and $X \sigma_{Y} \in P_{T}$. Using X 's continity it can be shown that

$$
\sum_{i=1}^{n} X\left(t_{i-1}^{n}\right)\left(Y\left(t_{i}^{n}\right)-Y\left(t_{i-1}^{n}\right)\right) \rightarrow_{\mathbf{P}} \int_{0}^{t} X d Y
$$

for partitions $0=t_{0}^{n}<\ldots<t_{n}^{n}=t$ of $[0, t]$ such that $\max _{1 \leq i \leq n} t_{i}^{n}-t_{i-1}^{n} \downarrow 0$.

Example 4.3. (Continued) $B(t)^{n}$ and $\mathrm{e}^{B(t)}$ are Itô processes with stochastic differentials

$$
\left\{\begin{array}{rl}
d\left(B(t)^{n}\right) & =\frac{n(n-1)}{2} B^{n-2}(t) d t+n B^{n-1}(t) d B(t) \\
d\left(\mathrm{e}^{B(t)}\right) & =\quad \frac{1}{2} \mathrm{e}^{B(t)} d t+\mathrm{e}^{B(t)} d B(t)
\end{array} .\right.
$$

4.6 Itô Formula for Itô processes

By replacing BM with an Itô process X in the derivation of Itô's formula for BM we get

$$
f(X(t))=f(X(0))+\int_{0}^{t} f^{\prime}(X(s)) d X(s)+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}(X(s)) d[X](s)
$$

for $f: \mathbb{R} \rightarrow \mathbb{R}$ that is C^{2} on the range of values of X. Written out in full detail this becomes

$$
f(X(t))=f(X(0))+\int_{0}^{t}\left(f^{\prime}(X(s)) \mu_{X}(s)+\frac{1}{2} f^{\prime \prime}(X(s)) \sigma_{X}(s)^{2}\right) d s+\int_{0}^{t} f^{\prime}(X(s)) \sigma_{X}(s) d B(s)
$$

Writing Itô's formula on differential form we have

$$
d f(X(t))=f^{\prime}(X(t)) d X(t)+\frac{1}{2} f^{\prime \prime}(X(t)) d[X](t) .
$$

For two Itô processes X and Y and a C^{2} function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ we have

$$
\begin{aligned}
d f(X(t), Y(t))=\frac{\partial f}{\partial x} & (X(t), Y(t)) d X(t)+\frac{\partial f}{\partial y}(X(t), Y(t)) d Y(t) \\
& +\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(X(t), Y(t)) d[X](t)+\frac{1}{2} \frac{\partial^{2} f}{\partial y^{2}}(X(t), Y(t)) d[Y](t) \\
& +\frac{\partial^{2} f}{\partial x \partial y}(X(t), Y(t)) d[X, Y](t) .
\end{aligned}
$$

One interesting application of the bivariate Itô formula is integration by parts

$$
d(X(t) Y(t))=X(t) d Y(t)+Y(t) d X(t)+d[X, Y](t)
$$

This result can alternatively be established by noting that

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(X\left(t_{i}^{n}\right)-X\left(t_{i-1}^{n}\right)\right)\left(Y\left(t_{i}^{n}\right)-Y\left(t_{i-1}^{n}\right)\right) \\
= & X(t) Y(t)-X(0) Y(0)-\sum_{i=1}^{n} X\left(t_{i-1}^{n}\right)\left(Y\left(t_{i}^{n}\right)-Y\left(t_{i-1}^{n}\right)\right)-\sum_{i=1}^{n} Y\left(t_{i-1}^{n}\right)\left(X\left(t_{i}^{n}\right)-X\left(t_{i-1}^{n}\right)\right)
\end{aligned}
$$

for $0=t_{0}^{n}<t_{1}^{n}<\ldots<t_{n}^{n}=t$ and sending $\max _{1 \leq i \leq n} t_{i}^{n}-t_{i-1}^{n} \downarrow 0$. This integrations by parts formula is not the same as that for the RS integral which do not have the last term on the right-hand side (because it vanishes due to the processes involved being FV and continuous).

Another application of the bivariate Itô formula is the special case when $Y(t)=t$:

$$
d f(X(t), t)=\frac{\partial f}{\partial x}(X(t), t) d X(t)+\frac{\partial f}{\partial t}(X(t), t) d t+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}(X(t), t) d[X](t) .
$$

Example 4.4. By the previous Itô formula $\{f(B(t), t)\}_{t \in[0, T]}$ is a martingale when $\frac{\partial f}{\partial t}+\frac{1}{2} \frac{\partial^{2} f}{\partial x^{2}}=0$ and $\left\{\frac{\partial f}{\partial x}(B(t), t)\right\}_{t \in[0, T]} \in E_{T}$. This recovers the three martingales of BM in Chapter 3 by inspection.

Example 4.5. (Example 4.23 in Klebaner) For f a C^{2} function we have

$$
[f(B), B](t)=\int_{0}^{t} f^{\prime}(B(s)) d s
$$

as by Corollary $4.16 d[f(B), B](t)$ equals

$$
d\left(f(B(t)) d B(t)=\left(f^{\prime}(B)(t) d B(t)+\frac{1}{2} f^{\prime \prime}(B(t)) d t\right) d B(t)=f^{\prime}(B)(t) d t\right.
$$

[^0]: ${ }^{1}$ Too measure theoretic to be proved by us.

[^1]: ${ }^{2}$ The proof for a general not necessarily continuous X is exceptionally difficult.

[^2]: ${ }^{3}$ Too technical a result for us to prove.

