4 Brownian Motion Calculus

An ordinary differential equation (ODE) with initial value is given as

$$x'(t) = \mu(x(t), t)$$
 for $t \in [0, T]$, $x(0) = x_0$.

Equivalently expressed on differential form as

$$dx(t) = \mu(x(t), t) dt$$
 for $t \in [0, T]$, $x(0) = x_0$,

and on integrated form as

$$x(t) = x_0 + \int_0^t \mu(x(s), s) \, ds \quad \text{for } t \in [0, T].$$

A stochastic differential equation (SDE) on differential form is given by

$$dX(t) = \mu(X(t), t) dt + \sigma(X(t), t) dB(t) \text{ for } t \in [0, T], \quad X(0) = x_0,$$

where $\{B(t)\}_{t\geq 0}$ is BM. Expressed on integrated form it becomes

$$X(t) = x_0 + \int_0^t \mu(X(s), s) \, ds + \int_0^t \sigma(X(s), s) \, dB(s) \quad \text{for } t \in [0, T].$$

But BM is not FV so that $\int_0^t \dots dB$ does not exist as a RS-integral and we need to give meaning to the so called Itô integral process

$$\left\{\int_0^t X \, dB\right\}_{t \in [0,T]} = \left\{\int_0^t X(s) \, dB(s)\right\}_{t \in [0,T]}.$$

This integral does not feature in math but is unique for stochastic calculus.

On Convergence of Random Variables

Definition 4.1. A sequence of random variables $\{X_n\}_{n=1}^{\infty}$ converges in probability to X ($\underline{X_n \to_{\mathbf{P}} X}$) if $\lim_{n\to\infty} \mathbf{P}\{|X_n - X| > \varepsilon\} = 0$ for each $\varepsilon > 0$.

A sequence of random variables $\{X_n\}_{n=1}^{\infty}$ converges in p'th mean, $p \ge 1$, to X ($\underline{X_n \to_{\mathbb{L}^p} X}$) if $\mathbf{E}\{|X|^p\} < \infty$ and $\lim_{n\to\infty} \mathbf{E}\{(X_n - X)^p\} = 0$.

Theorem 4.2. (CAUCHY CRITERION)

- 1. X_n converges in probability to some X if and only if $\lim_{m,n\to\infty} \mathbf{P}\{|X_m X_n| > \varepsilon\} = 0$ for each $\varepsilon > 0$.
- 2. X_n converges in p'th mean, $p \ge 1$, to some X if and only if $\mathbf{E}\{X_n^p\} < \infty$ for n large enough and $\lim_{m,n\to\infty} \mathbf{E}\{(X_m X_n)^p\} = 0$.

4.1-4.2 Definition of the Itô Integral and Itô Integral Processes

Henceforth $\{B(t)\}_{t\geq 0}$ is BM and $\{\mathcal{F}_t\}_{\geq 0} = \{\mathcal{F}_t^B\}_{\geq 0}$ the filtration generated by BM itself.

Definition 4.3. A stochastic process $\{X(t)\}_{t\in[0,T]}$ is <u>measurable</u> if a measurable function $X: \Omega \times [0,T] \to \mathbb{R}$, i.e., $X^{-1}(\mathcal{B}) \subseteq \sigma(\mathcal{F} \times ([0,T] \cap \mathcal{B})).$

The concept of measurable process is too technical to be fully utilized by us so we just inform that processes with cádlág, cáglád or continuous sample paths are measurable.

For a measurable process Fubini's theorem ensures that

$$\mathbf{E}\left\{\int_0^T X(t) \, dt\right\} = \int_0^T \mathbf{E}\{X(t)\} \, dt$$

in the sense that both sides are well-defined simultaneously and when that occur they agree¹.

The Itô integral is done in steps for subsequently larger classes of processes $S_T \subseteq E_T \subseteq P_T$:

Definition 4.4. A measurable and adapted process $\{X(t)\}_{t \in [0,T]}$ is in

• S_T if there exist is a grid $0 = t_0 < t_1 < \ldots < t_n = T$ of (non-random) times and random variables $\xi_0, \xi_1, \ldots, \xi_{n-1}$ with $\xi_i \mathcal{F}_{t_i}$ -measurable and $E(\xi_i^2) < \infty$ for $i = 0, \ldots, n-1$ such that

$$X(t) = \xi_0 \mathbf{1}_{\{0\}}(t) + \sum_{i=1}^n \xi_{i-1} \mathbf{1}_{(t_{i-1}, t_i]}(t) \quad \text{for } t \in [0, T],$$

•
$$E_T$$
 if $\mathbf{E}\left\{\int_0^T X(t)^2 dt\right\} < \infty$,

• P_T if $\mathbf{P}\left\{\int_0^T X(t)^2 dt < \infty\right\} = 1.$

Definition 4.5. For $X \in S_T$ the Itô integral process is defined

$$\int_0^t X \, dB = \sum_{i=1}^m \xi_{i-1}(B(t_i) - B(t_{i-1})) + \xi_m(B(t) - B(t_m))$$

for $t \in (t_m, t_{m+1}]$ and $m = 0, \ldots, n-1$, with $\int_0^0 X \, dB = 0$. Further,

$$\int_{s}^{t} X \, dB = \int_{0}^{t} X \, dB - \int_{0}^{s} X \, dB \quad \text{for } 0 \le s \le t.$$

When considering the Itô integral process $\{\int_0^t X \, dB\}_{t \in [0,T]}$ of $X \in S_T$ at times $s_1, \ldots, s_j \in [0,T]$ it is no restriction assume that s_1, \ldots, s_j are members of the grid $0 = t_0 < t_1 < \ldots < t_n = T$ used to define X as otherwise the grid can be enriched to include s_1, \ldots, s_j without affecting values of X or the Itô integral process. This technique is often useful in proofs.

¹Too measure theoretic to be proved by us.

Theorem 4.6. For $X, Y \in S_T$ we have

1.
$$\int_0^t (\alpha X(s) + \beta Y(s)) dB(s) = \alpha \int_0^t X dB + \beta \int_0^t Y dB$$
,

2.
$$\int_0^t \mathbf{1}_{(a,b]}(s) \, dB(s) = B(b) - B(a) \quad \text{for } (a,b] \subseteq [0,t].$$

- 3. $\int_0^t \mathbf{1}_{(a,b]}(s)X(s) \, dB(s) = \int_a^b X \, dB$ for $(a,b] \subseteq [0,t],$
- 4. the Itô integral process $\{\int_0^t X \, dB\}_{t \in [0,T]}$ has continuous sample paths,
- 5. the Itô integral process $\{\int_0^t X \, dB\}_{t \in [0,T]}$ is adapted to $\{\mathcal{F}_t\}_{t \in [0,T]}$,
- 6. $\left[\int_0^t X \, dB\right] = \left[\int_0^{(\cdot)} X \, dB\right](t) = \int_0^t X(s)^2 \, ds \text{ for } t \in [0, T],$
- 7. $\left[\int_{0}^{t} X \, dB, \int_{0}^{t} Y \, dB\right] = \int_{0}^{t} X(s)Y(s) \, ds \text{ for } t \in [0, T],$
- 8. the Itô integral process $\{\int_0^t X \, dB\}_{t \in [0,T]}$ is a martingale wrt. $\{\mathcal{F}_t\}_{t \in [0,T]}$,
- 9. $\mathbf{E}\{\int_0^t X \, dB\} = 0,$
- 10. $\mathbf{E}\left\{\left(\int_{0}^{t} X \, dB\right)^{2}\right\} = \mathbf{E}\left\{\int_{0}^{t} X(s)^{2} \, ds\right\} = \int_{0}^{t} \mathbf{E}\left\{X(s)^{2}\right\} ds$ (isometry), 11. $\mathbf{E}\left\{\left(\int_{0}^{t} X \, dB\right)\left\{\left(\int_{0}^{t} Y \, dB\right)\right\} = \mathbf{E}\left\{\int_{0}^{t} X(s)Y(s) \, ds\right\} = \int_{0}^{t} \mathbf{E}\left\{X(s)Y(s)\right\} ds.$

Proof. 1-5. By inspection of the definition.

6, 8 and 10. Done in the exercises.

7 and 11. Follows from 6 and 10, respectively by polarization.

9. Follows from 8 as martingales have constant mean.

Theorem 4.7. For $X \in E_T$ there exists a sequence $\{X_n\}_{n=1}^{\infty} \subseteq S_T$ such that

$$\lim_{n \to \infty} \mathbf{E} \left\{ \int_0^T (X_n(t) - X(t))^2 \, dt \right\} = 0.$$

Proof. For X continuous²: Given $\varepsilon > 0$ we need to prove that

$$\mathbf{E}\left\{\int_0^T (Y(t) - X(t))^2 dt\right\} \le \varepsilon \quad \text{for some } Y \in S_T.$$

To that end let

$$X^{(N)}(t) = \begin{cases} -N & \text{if } X(t) < -N \\ X(t) & \text{if } |X(t)| \le N \\ N & \text{if } X(t) > N \end{cases}$$

Since $X^{(N)}(t) - X(t) \to 0$ as $N \to \infty$ with $(X^{(N)}(t) - X(t))^2 \le X(t)^2$ we then have

$$\mathbf{E}\left\{\int_0^T (X^{(N)}(t) - X(t))^2 dt\right\} \to 0 \quad \text{as } N \to \infty$$

²The proof for a general not necessarily continuous X is exceptionally difficult.

by dominated convergence as $X \in E_T$. Using the elementary inequality $(x+y)^2 \leq 2x^2 + 2y^2$ it follows that it is enough to prove that, given $\varepsilon > 0$ and $N \in \mathbb{N}$, we have

$$\mathbf{E}\left\{\int_0^T (Y(t) - X^{(N)}(t))^2 dt\right\} \le \varepsilon \quad \text{for some } Y \in S_T.$$

But as $X^{(N)}$ is uniformly continuous over [0, T] the process

$$Z^{(n)}(t) = \mathbf{1}_{\{0\}}(t) X^{(N)}(0) + \sum_{i=1}^{n} \mathbf{1}_{(t_{i-1},t_i]}(t) X^{(N)}(t_{i-1}) \quad \text{for } t \in [0,T]$$

in S_T (where $0 = t_0 < t_1 < \ldots < t_n = T$ as usual) satisfies

$$\sup_{t \in [0,T]} \left| Z^{(n)}(t) - X^{(N)}(t) \right| \le \sup_{s,t \in [0,T], \, |s-t| \le \max_{1 \le i \le n} t_i - t_{i-1}} \left| X^{(N)}(s) - X^{(N)}(t) \right| \to 0$$

as $\max_{1 \le i \le n} t_i - t_{i-1} \downarrow 0$. Hence $Z^{(n)}(t) - X^{(N)}(t) \to 0$ with $(Z^{(n)}(t) - X^{(N)}(t))^2 \le 4N^2$, so

$$\mathbf{E}\left\{\int_{0}^{T} (Z^{(n)}(t) - X^{(N)}(t))^{2} dt\right\} \to 0 \quad \text{as} \quad \max_{1 \le i \le n} t_{i} - t_{i-1} \downarrow 0$$

by dominated convergence. So we may pick $Y = Z^{(n)}$ with $\max_{1 \le i \le n} t_i - t_{i-1}$ small enough.

Theorem and Definition 4.8. For $X \in E_T$ the Itô integral process $\{\int_0^t X \, dB\}_{t \in [0,T]}$ is well-defined as a mean-square $\to_{\mathbb{L}^2}$ limit of $\int_0^t X_n \, dB$ as $n \to \infty$ for $t \in [0,T]$, where $\{X_n\}_{n=1}^{\infty} \subseteq S_T$ are as in the previous theorem.

Proof. We show that $\{\int_0^t X_n dB\}_{n=1}^\infty$ is a Cauchy sequence in \mathbb{L}^2 : By isometry for S_T

$$\begin{split} \mathbf{E} \left\{ (\int_0^t X_n \, dB - \int_0^t X_m \, dB)^2 \right\} &= \mathbf{E} \left\{ (\int_0^t (X_n - X_m) \, dB)^2 \right\} \\ &= \mathbf{E} \left\{ \int_0^t (X_n(t) - X_m(t))^2 \, dt \right\} \\ &\leq 2 \, \mathbf{E} \left\{ \int_0^t (X_n(t) - X(t))^2 \, dt \right\} + 2 \, \mathbf{E} \left\{ \int_0^t (X(t) - X_m(t))^2 \, dt \right\} \to 0 \end{split}$$

as $m, n \to \infty$. Now, if also $\{\hat{X}_n\}_{n=1}^{\infty} \subseteq S_T$ satisfies

$$\lim_{n \to \infty} \mathbf{E} \left\{ \int_0^T (\hat{X}_n(t) - X(t))^2 \, dt \right\} = 0,$$

so that $\int_0^t \hat{X}_n dB$ converges in mean-square to some limit $\oint_0^t X dB$ as $n \to \infty$, we must show that $\int_0^t X dB = \oint_0^t X dB$. However, this follows from noting that

$$\begin{aligned} \mathbf{E} \Big\{ (\int_0^t X \, dB - \oint_0^t X \, dB)^2 \Big\} &\leftarrow \mathbf{E} \Big\{ (\int_0^t X_n \, dB - \int_0^t \hat{X}_n \, dB)^2 \Big\} \\ &\leq 2 \, \mathbf{E} \Big\{ \int_0^T (X_n(t) - X(t))^2 \, dt \Big\} + 2 \, \mathbf{E} \Big\{ \int_0^T (X(t) - \hat{X}_n(t))^2 \, dt \Big\} \to 0. \end{aligned}$$

Here we used the fact that $Y_n \to_{\mathbb{L}^2} Y$ implies $\mathbf{E}\{Y_n^2\} \to \mathbf{E}\{Y^2\}$ proved in the exercises. \Box

Theorem 4.9. Properties of the Itô integral process $\{\int_0^t X \, dB\}_{t \in [0,T]}$ for $X \in E_T$ are the same as those for $X \in S_T$ listed in Theorem 4.6.

Proof. 1 and 3. By inspection of the definition.

4 and 6. Too complicated for us to prove.

5. Follows from that limits of measurable functions are measurable.

7-11. As in the proof of Theorem 4.6.

Theorem 4.10. ³For $X \in P_T$ there exists $\{X_n\}_{n=1}^{\infty} \subseteq E_T$ such that $\int_0^T (X_n(t) - X(t))^2 dt \to_{\mathbf{P}} 0$ as $n \to \infty$.

Theorem and Definition 4.11. ³For $X \in P_T$ the Itô integral process $\{\int_0^t X \, dB\}_{t \in [0,T]}$ is well-defined as a convergence in probability $\rightarrow_{\mathbf{P}}$ limit of $\int_0^t X_n \, dB$ for $t \in [0,T]$, where $\{X_n\}_{n=1}^\infty \subseteq E_T$ are as in the previous theorem.

Theorem 4.12. The properties 1-7 in Theorem 4.6 hold for the Itô integral process $\{\int_0^t X \, dB\}_{t \in [0,T]}$ with $X \in P_T$ while properties 8-11 need not hold.

Proof. 1 and 3-7. As for E_T .

8-9. In the exercises we encounter a non zero-mean Itô integral process.

10-11. For $X \in P_T \setminus E_T$ we have $\int_0^T \mathbf{E}\{X(t)^2\} dt = \infty$.

Theorem 4.13. ³A continuous and adapted $\{X(t)\}_{t \in [0,T]}$ is in P_T and

$$\sup_{t \in [0,T]} \left| \int_0^t X \, dB - \int_0^t \sum_{i=1}^n X(t_{i-1}) \mathbf{1}_{(t_{i-1},t_i]} \, dB \right| \to_\mathbf{P} 0$$

when $0 = t_0 < t_1 < \ldots < t_n = T$ with $\max_{1 \le i \le n} t_i - t_{i-1} \downarrow 0$. In particular

$$\sum_{i=1}^{n} X(t_{i-1}^{n})(B(t_{i}^{n}) - B(t_{i-1}^{n})) \to_{\mathbf{P}} \int_{0}^{T} X \, dB.$$

In general the Itô integral is not an RS integral as

$$\sum_{i=1}^{n} X(t_{i}^{n}) \left(B(t_{i}^{n}) - B(t_{i-1}^{n}) \right) - \sum_{i=1}^{n} X(t_{i-1}^{n}) \left(B(t_{i}^{n}) - B(t_{i-1}^{n}) \right) \to [X, B](T) \neq 0.$$

But when X is FV we do however have [X, B](T) = 0 as BM is continuous.

³Too technical a result for us to prove.

Example 4.1. (EXAMPLE 4.3 IN KLEBANER) For BM itself we have

$$\sum_{i=1}^{n} B(t_i^n) \left(B(t_i^n) - B(t_{i-1}^n) \right) - \sum_{i=1}^{n} B(t_{i-1}^n) \left(B(t_i^n) - B(t_{i-1}^n) \right) \to [B](T) = T.$$

By "twisting" this example a little one deduces that

$$\begin{split} &\int_0^T B \, dB \\ \leftarrow \sum_{i=1}^n B(t_{i-1}^n) \left(B(t_i^n) - B(t_{i-1}^n) \right) \\ &= \frac{1}{2} \sum_{i=1}^n \left(B(t_i^n) + B(t_{i-1}^n) \right) \left(B(t_i^n) - B(t_{i-1}^n) \right) - \frac{1}{2} \sum_{i=1}^n \left(B(t_i^n) - B(t_{i-1}^n) \right) \left(B(t_i^n) - B(t_{i-1}^n) \right) \\ &\to \frac{1}{2} B(T)^2 - \frac{1}{2} T. \end{split}$$

4.3 Itô Integral and Gaussian Processes

For a measurable non-random random process $X : [0, T] \to \mathbb{R}$ (with no dependence on $\omega \in \Omega$) we have $X \in E_T$ if and only if $X \in P_T$ if and only if $\int_0^T X(t)^2 dt < \infty$.

Theorem 4.14. For a non-random $X : [0,T] \to \mathbb{R}$ with $\int_0^T X(t)^2 dt < \infty$ the Itô integral process $\{\int_0^t X dB\}_{t \in [0,T]}$ is zero-mean Gaussian with

$$\mathbf{Cov}\{\int_0^s X \, dB, \int_0^t X \, dB\} = \mathbf{E}\{(\int_0^s X \, dB) \, (\int_0^t X \, dB)\} = \int_0^{\min\{s,t\}} X(r)^2 \, dr.$$

Proof. Gaussian follows from that limits of Gaussians are Gaussian while zero-mean is by Theorem 4.9. For $0 \le s \le t$ towering, the martingale property and isometry further give

$$\mathbf{E}\{(\int_0^s X \, dB) \, (\int_0^t X \, dB)\} = \mathbf{E}\{(\int_0^s X \, dB) \, \mathbf{E}\{\int_0^t X \, dB | \mathcal{F}_s\}\} = \mathbf{E}\{(\int_0^s X \, dB)^2\} = \int_0^s X(r)^2 \, dr. \ \Box$$

Example 4.2. (EXAMPLE 4.10 IN KLEBANER) By Theorem 4.14 $Y(t) = \int_0^t s \, dB(s)$ is $N(0, t^3/3)$ as $\mathbf{E}\{Y(t)^2\} = \int_0^t s^2 \, dt = t^3/3$.

4.4 Itô's Formula for BM

Theorem 4.15. (Itô's FORMULA) For a C^2 function $f : \mathbb{R} \to \mathbb{R}$ we have

$$f(B(t)) = f(B(0)) + \int_0^t f'(B(s)) \, dB(s) + \frac{1}{2} \int_0^t f''(B(s)) \, ds.$$

Itô's formula is often written on differential form as

$$df(B(t)) = f'(B)(t) \, dB(t) + \frac{1}{2} \, f''(B(t)) \, dt.$$

Proof. With $0 = t_0^n < t_1^n < \ldots < t_n^n = t$ a second order Taylor expansion gives

$$\begin{aligned} f(B(t)) &- f(B(0)) \\ &= \sum_{i=1}^{n} (f(B(t_{i}^{n})) - f(B(t_{i-1}^{n}))) \\ &= \sum_{i=1}^{n} f'(B(t_{i-1}^{n})) \left(B(t_{i}^{n}) - B(t_{i-1}^{n}) \right) + \frac{1}{2} \sum_{i=1}^{n} f''(B(t_{i-1}^{n})) \left(B(t_{i}^{n}) - B(t_{i-1}^{n}) \right)^{2} + \frac{\text{higher order}}{\text{terms}}. \end{aligned}$$

Sending $\max_{1 \le i \le n} t_i^n - t_{i-1}^n \downarrow 0$ the first term on the right-hand side converges to $\int_0^t f'(B) dB$. Being more specific with the third term it is not hard to show that it converges to 0. As for the second sum on the right-hand, that it converges to

$$\int_0^t f''(B(s)) \, d[B](s) = \int_0^t f''(B(s)) \, ds.$$

follows from that it by continuity of f''(B) is asymptotically the same as

$$\sum_{i=1}^{n} f''(B(s_{j_{i}}^{m})) \left(B(t_{i}^{n}) - B(t_{i-1}^{n})\right)^{2}$$

for a suitable choice of $0 \leq j_1 \leq \cdots \leq j_n \leq m$, where $0 = s_0^m < s_1^m < \ldots < s_m^m = t$ is a courser grid than $\{t_i^n\}_{i=0}^n$, that is, $m \leq n$ and $\{s_i^m\}_{i=0}^m \subseteq \{t_i^n\}_{i=0}^n$. Now send $\max_{1 \leq i \leq n} t_i^n - t_{i-1}^n \downarrow 0$ and $\max_{1 \leq i \leq m} s_i^m - s_{i-1}^m \downarrow 0$ afterwards using [B](t) = t and convergence of Riemann sums.

Corollary 4.16. 1. $dB(t)^2 = d[B](t) = dt$,

- 2. dB(t)dt = 0,
- 3. $dt^2 = 0$.

Example 4.3. (EXAMPLES 4.12-13 IN KLEBANER) For $f(x) = x^n$ we get

$$B(t)^{n} = n \int_{0}^{t} B^{n-1}(s) \, dB(s) + \frac{n(n-1)}{2} \int_{0}^{t} B^{n-2}(s) \, ds$$
$$d(B(t)^{n}) = n B^{n-1}(t) \, dB(t) + \frac{n(n-1)}{2} B^{n-2}(t) \, dt$$

(recovering Example 4.1 with n = 2) while $f(x) = e^x$ gives

$$\begin{cases} e^{B(t)} = 1 + \int_0^t e^{B(s)} dB(s) + \frac{1}{2} \int_0^t e^{B(s)} ds \\ d(e^{B(t)}) = e^{B(t)} dB(t) + \frac{1}{2} e^{B(t)} dt \end{cases}$$

4.5 Itô Processes and Stochastic Differentials

Definition 4.17. An Itô process is given by

$$\{X(t)\}_{t \in [0,T]} = \left\{X(0) + \int_0^t \mu(s) \, ds + \int_0^t \sigma(s) \, dB(s)\right\}_{t \in [0,T]}$$

where X(0) is a \mathcal{F}_0 -measurable random variable, μ a measurable and adapted process with $\int_0^T |\mu(t)| dt < \infty$ and $\sigma \in P_T$.

A stochastic differential is an Itô process on differential form

$$dX(t) = \mu(t) dt + \sigma(t) dB(t)$$

Itô processes are adapted and continuous. Further X(0) is a constant as long as $\mathcal{F}_0 = \mathcal{F}_0^B = \{\emptyset, \Omega\}$. Writing $\mu = \mu^+ - \mu^-$ we see that $\{\int_0^t \mu(s) \, ds\}_{t \in [0,T]}$ is FV so that

$$[X](t) = \left[\int_0^t \mu(s) \, ds + \int_0^t \sigma \, dB, \int_0^t \mu(s) \, ds + \int_0^t \sigma \, dB\right] = \left[\int_0^t \sigma \, dB\right] = \int_0^t \sigma(s)^2 \, ds.$$

Using polarization we find the covariation between two Itô processes X and Y

$$[X,Y](t) = \int_0^t \sigma_X(s)\sigma_Y(s) \, ds.$$

Written on differential form this becomes

$$dX(t)dY(t) = d[X,Y](t) = \sigma_X(t)\sigma_Y(t) dt.$$

The Itô integral of one Itô process X with respect to another Y is defined as

$$\int_0^t X \, dY = \int_0^t X(s) \, \mu_Y(s) \, ds + \int_0^t X(s) \sigma_Y(s) \, dB(s) \quad \text{for } t \in [0, T]$$

when $\int_0^t |X(s)\mu_Y(s)| \, ds < \infty$ and $X\sigma_Y \in P_T$. Using X's continity it can be shown that

$$\sum_{i=1}^{n} X(t_{i-1}^{n}) \left(Y(t_{i}^{n}) - Y(t_{i-1}^{n}) \right) \to_{\mathbf{P}} \int_{0}^{t} X \, dY$$

for partitions $0 = t_0^n < \ldots < t_n^n = t$ of [0, t] such that $\max_{1 \le i \le n} t_i^n - t_{i-1}^n \downarrow 0$.

Example 4.3. (CONTINUED) $B(t)^n$ and $e^{B(t)}$ are Itô processes with stochastic differentials

$$\begin{cases} d(B(t)^n) = \frac{n(n-1)}{2} B^{n-2}(t) dt + n B^{n-1}(t) dB(t) \\ d(e^{B(t)}) = \frac{1}{2} e^{B(t)} dt + e^{B(t)} dB(t) \end{cases}.$$

4.6 Itô Formula for Itô processes

By replacing BM with an Itô process X in the derivation of Itô's formula for BM we get

$$f(X(t)) = f(X(0)) + \int_0^t f'(X(s)) \, dX(s) + \frac{1}{2} \int_0^t f''(X(s)) \, d[X](s)$$

for $f: \mathbb{R} \to \mathbb{R}$ that is C^2 on the range of values of X. Written out in full detail this becomes

$$f(X(t)) = f(X(0)) + \int_0^t \left(f'(X(s))\mu_X(s) + \frac{1}{2} f''(X(s))\sigma_X(s)^2 \right) ds + \int_0^t f'(X(s))\sigma_X(s) dB(s).$$

Writing Itô's formula on differential form we have

$$df(X(t)) = f'(X(t)) \, dX(t) + \frac{1}{2} \, f''(X(t)) \, d[X](t).$$

For two Itô processes X and Y and a C^2 function $f: \mathbb{R}^2 \to \mathbb{R}$ we have

$$df(X(t), Y(t)) = \frac{\partial f}{\partial x}(X(t), Y(t)) dX(t) + \frac{\partial f}{\partial y}(X(t), Y(t)) dY(t) + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(X(t), Y(t)) d[X](t) + \frac{1}{2} \frac{\partial^2 f}{\partial y^2}(X(t), Y(t)) d[Y](t) + \frac{\partial^2 f}{\partial x \partial y}(X(t), Y(t)) d[X, Y](t).$$

One interesting application of the bivariate Itô formula is integration by parts

$$d(X(t)Y(t)) = X(t) \, dY(t) + Y(t) \, dX(t) + d[X,Y](t).$$

This result can alternatively be established by noting that

$$\sum_{i=1}^{n} (X(t_{i}^{n}) - X(t_{i-1}^{n})) (Y(t_{i}^{n}) - Y(t_{i-1}^{n}))$$

$$= X(t)Y(t) - X(0)Y(0) - \sum_{i=1}^{n} X(t_{i-1}^{n}) (Y(t_{i}^{n}) - Y(t_{i-1}^{n})) - \sum_{i=1}^{n} Y(t_{i-1}^{n}) (X(t_{i}^{n}) - X(t_{i-1}^{n}))$$

for $0 = t_0^n < t_1^n < \ldots < t_n^n = t$ and sending $\max_{1 \le i \le n} t_i^n - t_{i-1}^n \downarrow 0$. This integrations by parts formula is not the same as that for the RS integral which do not have the last term on the right-hand side (because it vanishes due to the processes involved being FV and continuous).

Another application of the bivariate Itô formula is the special case when Y(t) = t:

$$df(X(t),t) = \frac{\partial f}{\partial x}(X(t),t) \, dX(t) + \frac{\partial f}{\partial t}(X(t),t) \, dt + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(X(t),t) \, d[X](t).$$

Example 4.4. By the previous Itô formula $\{f(B(t),t)\}_{t\in[0,T]}$ is a martingale when $\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} = 0$ and $\{\frac{\partial f}{\partial x}(B(t),t)\}_{t\in[0,T]} \in E_T$. This recovers the three martingales of BM in Chapter 3 by inspection.

Example 4.5. (EXAMPLE 4.23 IN KLEBANER) For $f \neq C^2$ function we have

$$[f(B), B](t) = \int_0^t f'(B(s)) \, ds$$

as by Corollary 4.16 d[f(B), B](t) equals

$$d(f(B(t))dB(t) = (f'(B)(t) dB(t) + \frac{1}{2} f''(B(t)) dt) dB(t) = f'(B)(t) dt.$$