4 Brownian Motion Calculus

An ordinary differential equation (ODE) with initial value is given as
2'(t) = p(z(t),t) for t €[0,T], xz(0)= x.
Equivalently expressed on differential form as
dz(t) = p(x(t),t)dt for t € [0,T], z(0) = xo,
and on integrated form as
2(t) = o + [ p(x(s),s)ds for t € [0,T].

A stochastic differential equation (SDE) on differential form is given by

dX(t) = p(X(t),t)dt + o(X(t),t)dB(t) for t €[0,7], X(0)= xo,
where {B(t)}+>0 is BM. Expressed on integrated form it becomes
X(t)=x0+ f(f,u(X(s),s) ds + fOtO'(X(S), s)dB(s) for t € [0,T].

But BM is not FV so that fot ... dB does not exist as a RS-integral and we need to give

meaning to the so called [to integral process

{f()tX dB}te[O,T} - {f(fX(S) dB(S)}te[OVT]‘

This integral does not feature in math but is unique for stochastic calculus.

On Convergence of Random Variables

Definition 4.1. A sequence of random variables {X,,}°°, converges in pro-

bability to X (X, —p X) if lim,, ., P{|X,, — X| > ¢} = 0 for each ¢ > 0.

A sequence of random variables {X,,}>° | converges in p’th mean, p > 1,

to X (X, =1 X) if E{|X[P} < 0o and lim,,_, E{(X, — X)?} = 0.

Theorem 4.2. (CAUCHY CRITERION)
1. X,, convereges in probability to some X if and only if lim,, ,
P{|X,, — X,| > e} =0 for each € > 0.

2. X, convereges in p’th mean, p > 1, to some X if and only if E{X?} <

oo for n large enough and lim,, ;o E{(X,, — X,,)?} = 0.



4.1-4.2 Definition of the It6 Integral and It6 Integral Processes

Henceforth {B(t)}+>0 is BM and {F;}>o = {FP}>o the filtration generated by BM itself.

Definition 4.3. A stochastic process {X(¢)}co,r) is measurable if a mea-

surable function X : Q x [0,7] = R, i.e., X *(B) C o(F x ([0,T) N B)).

The concept of measurable process is too technical to be fully utilized by us so we just
inform that processes with cadlag, caglad or continuous sample paths are measurable.

For a measurable process Fubini’s theorem ensures that
T T
E{[; X(t)dt} = [ E{X(t)}dt
in the sense that both sides are well-defined simultaneously and when that occur they agree!.
The Ito6 integral is done in steps for subsequently larger classes of processes S+ C Er C Pr:
Definition 4.4. A measurable and adapted process {X (t)}icpo,r is in

e Sy if there exist is a grid 0 =t; < t; < ... <t, =T of (non-random)
times and random variables &y, &1, .. ., §,—1 with & Fi,-measurable and

E(€?) < oo for i =0,...,n—1 such that

X(t) = &Ly (t) + D &—1lw, 44 (t)  for t € 0,77,
=1

o Er if E{[ X(t)?dt} < oo,

o Prif P{[] X(t)*dt < oo} =1.

Definition 4.5. For X € Sp the It6 integral process is defined

JoX dB = ii&_l(B(ti) = B(ti-1)) + &m(B(t) — B(tm))
for t € (tm, tmy1] and m =0,... ,n—1, with fOOXdB = 0. Further,
[iXdB= [[XdB~— [[XdB for 0<s<t.
When considering the It6 integral process {fot X dB}icpom of X € Sp at times sq,...,5; €
[0,77] it is no restriction assume that sq,...,s; are members of the grid 0 =ty < t; < ... <

t, = T used to define X as otherwise the grid can be enriched to include s,...,s; without

affecting values of X or the Ito integral process. This technique is often useful in proofs.

IToo measure theoretic to be proved by us.



Theorem 4.6. For X,Y € St we have

1. [3(aX(s)+BY(s)dB(s) =a [, XdB+ 3 [, Y dB,
2. [ 1(ay(s)dB(s) = B(b) — B(a) for (a,b] C [0,1],
3. [ 1wy (s)X(s)dB(s) = [ X dB for (a,b] C [0,],
4. the It6 integral process { fg X dB}ejo,r) has continuous sample paths,
5. the Ito integral process {f(;5 X dB}yepom is adapted to {F; }iep1,
6. [f1 XdB] =[[) X dB](t) = [ X(s)*ds for t € [0,T),
7. [Jo X dB, [y Y dB] = [, X(s)Y(s)ds for t € [0,T],
8. the Itd integral process {fg X dB}icpo,r is a martingale wrt. {7 }iejo.17,
9. E{f, XdB} =0,
10. E{(J, X dB)?} = E{[, X(s)*ds} = [, E{X(s)?} ds (isometry),
11. E{(f; X dB){(Jy Y dB)} = E{J, X(s)Y (s)ds} = [; E{X(s)Y(s)} ds.
Proof. 1-5. By inspection of the definition.

6, 8 and 10. Done in the exercises.

7 and 11. Follows from 6 and 10, respectively by polarization.

9. Follows from 8 as martingales have constant mean.

Theorem 4.7. For X € Ep there exists a sequence {X,,}5°, C Sy such that

lim E{ [ (X,(t) — X (t))2dt} = 0.

n—oo
Proof. For X continuous®: Given € >0 we need to prove that

E{fOT(Y(t) —X(t))*dt} <e for some Y € Sr.

To that end let

-N if X(t) < -
X = X() it |X<>|§N -
N if X(t)>N
Since XM (t) — X (t) — 0 as N — oo with (X™(¢) — X (¢))? < X(¢)? we then have

E{fOT(X(N)(t) —X(t))*dt} -0 as N—o0

2The proof for a general not necessarily continuous X is exceptionally difficult.




by dominated convergence as X € Ep. Using the elementary inequality (z+vy)* < 222+ 2>

it follows that it is enough to prove that, given € >0 and N € N, we have
E{[T(Y(t)- XM (®)2dt} <e for some Y € Sr.
But as X™) is uniformly continuous over [0, T the process
ZM(t) = 10y (t) XN (0) + ilmmz-] XM (t,_y) for te0,T]
in Sy (where 0 =1t, <t; < ... <t, =T as usual) satisfies

sup ‘Z(”)(t)—X(N)(t)| < sup |X(N)(s)—X(N)(t)‘ — 0

t€[0,T] s,t€[0,T7], \sft|glr£%xn ti—ti—1

as maxj<jcn ti—t;_1 4 0. Hence ZM () — XN (#) — 0 with (ZM™(t) — XM(¢))2 < 4 N2, so

E{fOT(Z(") ) —X™M(@)*dt} -0 as maxt;—t; 110

1<i<n

by dominated convergence. So we may pick Y = Z™ with max;<;<, t;—t;_; small enough.[J

Theorem and Definition 4.8. For X € FEp the Ito integral process
{fOthB}te[O,T] is well-defined as a mean-square —2 limit of fot X, dB as

n — oo for t € [0, 7], where {X,,}>2, C St are as in the previous theorem.

Proof. We show that { fot X, dB}%° | is a Cauchy sequence in L?: By isometry for Sy

E{(JXndB — [;XmdBY} = B{(f;(X\— X,) dB)*}

= B{ [ (X.(t) = X, (1)) dt}

<2E{ [ (Xa(t) = X (1))%dt} + 2E{ [J(X(t) — X,u(t))*dt} — 0
as m,n — oo. Now, if also {X,,}°2, C Sy satisfies

: T,

lim E{ [, (X,(t)—X(t))*dt} =0,
so that fot X, dB converges in mean-square to some limit f; X dB as n — 0o, we must show
that f(f XdB = fot X dB. However, this follows from noting that
E{([;XdB — $ X dB)*} «+ E{([,X,dB — [, X, dB)*}

<2B{ [} (Xu(t) = X (1)) dt} + 2B{ [j' (X (1) = X, (1))t} — 0.

Here we used the fact that Y, —12 Y implies E{Y,?} — E{Y?} proved in the exercises. [



Theorem 4.9. Properties of the It6 integral process { fot X dB}ieo,n for

X € Er are the same as those for X € St listed in Theorem 4.6.

Proof. 1 and 3. By inspection of the definition.
4 and 6. Too complicated for us to prove.
5. Follows from that limits of measurable functions are measurable.

7-11. As in the proof of Theorem 4.6.

Theorem 4.10. 3For X € Pr there exists {X,,}°°, C Er such that

foT(Xn(t) —X(t))?*dt -p 0 as n— oco.

Theorem and Definition 4.11. *For X € Pp the Ito integral process
{ fot X dB}iepo,r is well-defined as a convergence in probability —p limit of

fot X, dB for t €[0,T], where {X,,}22, C Ep are as in the previous theorem.

Theorem 4.12. The properties 1-7 in Theorem 4.6 hold for the Ito integral
process { fot X dB}ieo,r) with X € Pp while properties 8-11 need not hold.

Proof. 1 and 3-7. As for Er.
8-9. In the exercises we encounter a non zero-mean [to integral process.

10-11. For X € Pr\ By we have [ E{X(t)?} dt = cc.

Theorem 4.13. *A continuous and adapted {X (¢)}+eo7) is in Pr and

t n
te[0,T] 0 i=1
when 0 =1y <ty < ... <t, =T with max;<;<, t; — ;1] 0. In particular

SX(E)(B(E) — B#,) —p [7X dB.

i=1
In general the 1to integral is not an RS integral as
2, X(t) (B(t) = Btiy)) — 2 X (t2,) (B(E) = B(tiy) = [X, BI(T) # 0.

But when X is FV we do however have [X, B|(T)) = 0 as BM is continuous.

3Too technical a result for us to prove.



Example 4.1. (EXAMPLE 4.3 IN KLEBANER) For BM itself we have

SSB() (B() — B(t,)) — B (B — B(t™)) — [BI(T) =T.

=1 =1

By “twisting”this example a little one deduces that
[ BdB

~ LB (B(E) - B(t)

1=

Z (B()+B(#) (B(E) ~ B(I,) — - (B() ~ B(.)) (B(#) ~ B(1)

1 i=1

1
2
%

—1B(T)?-1iT.

4.3 Ito Integral and Gaussian Processes

For a measurable non-random random process X : [0,7] — R (With no dependence on w € €2)

we have X € Er if and only if X € Pr if and only if fo )2dt < oo.

Theorem 4.14. For a non-random X : [0,7] — R with fo t)*dt < oo

the Ito integral process { f(f X dB}icpo,r) is zero-mean Gaussian with

Cov{ [’ X dB, [{X dB} = E{([;X dB) ([,X dB)} = [ X (r)? dr.

Proof. Gaussian follows from that limits of Gaussians are Gaussian while zero-mean is by

Theorem 4.9. For 0 < s <t towering, the martingale property and isometry further give

E{(J; X dB) (fOthB)} :E{(fostB)E{f(fXdBlfs}} =E{([;XdB)*} = [[X(r)*dr. O

Example 4.2. (EXAMPLE 4.10 IN KLEBANER) By Theorem 4.14 Y'(¢)
= [, sdB(s) is N(0,3/3) as E{Y (t)?} = [; s*dt = t*/3.

4.4 1It6’s Formula for BM

Theorem 4.15. (IT6’S FORMULA) For a C? function f : R — R we have

F(B() = f(B(0) + [, f(B(s)dB(s) + } [, f"(B(s)) ds.

It0’s formula is often written on differential form as

dF(B(1) = '(B)(1)dB(t) + L f/(B()) dt.



Proof. With 0 =t <t} < ... <1t =1 a second order Taylor expansion gives

(B(t)) = f(B(0))
(f(B(t)) = f(B(ti1)))

I
= <

1

<.
Il

Il
M=

FBUE)) (BR) = B(E1) + § 37/ (B(E1) (B(E) - Blriy))? + MEler o,

1 terms

<.
I

Sending maxi<;<p ti —t7 4 | 0 the first term on the right-hand side converges to fot f(B)dB.
Being more specific with the third term it is not hard to show that it converges to 0. As for

the second sum on the right-hand, that it converges to

Jof"(B(s))d[B](s) = [;f"(B(s)) ds.
follows from that it by continuity of f”(B) is asymptotically the same as
S B(s5) (B() = Bt
for a suitable choice of 0 < j; < --- < 3, <m, where 0 = 57" < s7" < ... < s/n = tis a courser

grid than {t’} ,, that is, m < n and {s7"}, C {t?}",. Now send max;<;<, /" — ', 1 0

and maxi<;<p, si* — s, | 0 afterwards using [B](t) = ¢t and convergence of Riemann sums.[]
Corollary 4.16. 1. dB(t)* = d[B](t) = dt,

2. dB(t)dt = 0,

3. dt? = 0.

Example 4.3. (EXAMPLES 4.12-13 IN KLEBANER) For f(z) = 2™ we get

Bt)" =nf, B"(s)dB(s) + "2 [ B"2(s) ds

2

d(B(t)") = nB" (1) dB(t) + " Br2(t) dt

(recovering Example 4.1 with n = 2) while f(z) = e” gives

1+ [{eP@dB(s) + 1 [TePO) ds
d(eP®) = PO dB(t) + 1 eBW dt



4.5 Ito Processes and Stochastic Differentials

Definition 4.17. An It6 process is given by

{X () }epr = {X(0) + fo s)ds + fo s) dB(s )}te[O,T]

where X (0) is a Fy-measurable random variable, 1 a measurable and adapted
process with fo lu(t)] dt < oo and o € Pr.

A stochastic differential is an It6 process on differential form

dX(t) = p(t) dt + o(t) dB(t).

It6 processes are adapted and continuous. Further X (0) is a constant as long as Fy =

FB ={0,Q}. Writing = u™ — u~ we see that {fo s) ds}icpo,r) is FV so that
fo ds+f00dB fo ds+f00dB [f(fadB] = fota(s)2 ds.
Using polarization we find the covariation between two [to processes X and Y
(t) = fgax<8)0'y<8) ds.
Written on differential form this becomes
dX(t)dY (t) = d[X,Y](t) = ox(t)oy(t) dt.
The Ito integral of one Ito process X with respect to another Y is defined as
fOtX dY = fJX(s) py (s)ds + fOtX(s)ay(s) dB(s) for t €[0,T]

when f(f | X (s)uy (s)] ds < oo and Xoy € Pr. Using X’s continity it can be shown that

SX () (Y () = Y(E,) = fiX dY

i=1

for partitions 0 = t{ < ... <t =t of [0,¢] such that max;<;<, " — ¢, | 0.

Example 4.3. (CONTINUED) B(t)" and e?® are Ito processes with stochas-

tic differentials

2

d(eP®) = 1eBOdt + PO dB(t)

d(B(t)") = "D Br=2(4) dt + n B"~(t) dB(t)

4.6 Itd6 Formula for Ito processes
By replacing BM with an It6 process X in the derivation of Itd’s formula for BM we get

8



FIX () = FX(0) + [y f'(X(5) dX (5) + § [y /(X (s)) d[X](s)
for f: R — R that is C? on the range of values of X. Written out in full detail this becomes
FIX(@) = FXO) + [y (f (X (8)px(s) + 3 £(X(5)ox(s)”) ds + [y /(X (s))ox(s) dB(s).
Writing [t6’s formula on differential form we have
df (X (1)) = /(X (1)) dX(t) + 5 f"(X (1)) d[X](2).
For two Ito processes X and Y and a C? function f : R? — R we have

(). Y ) = L), v dx e + %(X(tx Y (1) dY (1)
1 0%f

ox
L SE XY @) X)) + 3 T X0, Y ) Ay )

2 9z
0 f
0xdy

One interesting application of the bivariate Ito6 formula is integration by parts

(X (), Y (1) d[X, Y](2).

AX (DY () = X(1)dY () + Y (t) dX () + d[X, Y](t).

This result can alternatively be established by noting that
2 (X(H) = X (t)) (V({E) - Y(5-)

= X(OY () = XOY(0) = X (V) =Y () = SV () (X () - X ()

1=

for 0 =t <1} < ... <1} =1 and sending max;<;<, t]' —tI" ; J 0. This integrations by parts

formula is not the same as that for the RS integral which do not have the last term on the

right-hand side (because it vanishes due to the processes involved being FV and continuous).
Another application of the bivariate It6 formula is the special case when Y (t) = t:

L of af 1 0%f

= o (X(1), ) dX () + 5 2 0z

df (X (t),1) (X (t),t)dt + (X (1), ) d[X](t).

Example 4.4. By the previous Ito formula {f(B(t),?)}scjo,7] is a martingale

when g—{ + %% = 0 and {%(B(t),t)}te[o;_p] € Ep. This recovers the three

martingales of BM in Chapter 3 by inspection.

Example 4.5. (EXAMPLE 4.23 IN KLEBANER) For f a C? function we have
F(B), BI(t) = [, f'(B(s)) ds
as by Corollary 4.16 d[f(B), B](t) equals

d(f(B(1)dB(t) = (f'(B)(t) dB(t) + 5 f"(B(t)) dt) dB(t) = f'(B)(t) dt.



