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Consider an ODE with initial value
——

2'(t) = p(z(t),t) for te [0,T], =z(0)= =,

for a T € (0,00) and an zg € R. According to the Peano_theorem it is sufficient to

require continuity of the coefficient function p : R x [0,7] — R in order for a solution
to exist at least in some sub-interval [0, S] of [0,T]. The solution need not be unique.

If the coefficient u is continuous as well as globally Lipschitz continuous in the second

———e

variable, that is,
|p(t,z) — plt,y)| < K|z —y| for t€[0,7T] and z,y € R,

for some constant K > 0, then the Pica.rdnLindel_tif theorem ensures that there exists a

unique solution to the ODE.

We shall now start to discuss stochastic differential equations (SDE)

dX(t) = uw(X(t),t)dt + o(X(t),t)dB(t) for t € [0,T], X(0)= 0.
5.1 Definition of SDE
Through out this chapter { B(t)};>0 denotes BM and {F;}>0 = {F{}>0 is the filtration

generated by BM itself. An SDE with coefficient functions y,0 : R x [0,7] — R is given
on differential form by

—_—

dX(t) = u(X(¢),t)dt + o(X(t),t)dB(t) for t €-[0,T], X(0)= 0.

The function p is called the drift coefficient of the SDE while o is called the diffusion

coefficient. Both these functions must be measurable. The initial value xg is a any real

(non-random) number. Alternatively, the SDE can be expressed on integrated form as

t '
X(t) za:g+f0 ,u,(X(s),s)ds+’/(; o(X(s),s)dB(s) for te [0,7T].

A solution X to the SDE is called a diffusion process. Obviously a solution (if it exists)

is an Ito process. According to Chapter 4 X must also be adapted and continuous with
gran 1o progess:

T
]D W(X(8),0)]dt <o and {o(X(t),t)heporr) € Pr-

An SDE can also be started with a random (variable) initial value X(0) = X,

that is independent of {F}i>0. One way to accomplish this is to insert the random
Xy instead of the non-random zg in the solution to the non-random initial value SDE

when that solution has been constructed. (Similarly to how the abstract conditional

expectation can be obtained from the elementary ditto.) This however leads to a non-

adapted solution so a more satisfactory way is to work with the enlarged filtration F; =
FB\/ o(Xy) instead of FP: Everything we have done so far and will do in the sequel
based on the filtration being FZ will work without any alterations also for F2 \/ o(Xg).
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A solution to the SDE is called a strong solution if it is a solution with the BM
B given (for any such given B). An SDE has strong uniqueness if (given any BM B)
any pair of strong solutions agree (except for on a null-event). Note that this does not
assume existence, so an SDE can display strong uniqueness without having a strong
solutions. (Such SDE do exists!) Until otherwise is specifically mentioned we discuss
and deal with strong solutions only.

One might suspect that a solution to an SDE should resemble a solution of the
corresponding ODE with o taken to be zero. This is sometimes the case but other
times the solutions to these SDE and ODE are very different instead.

SDE with coefficients p(x,t) = u(xr) and o(z,t) = o(z) that do not depend on
t € [0,T] are called (time) homogeneous. More detailed results about many issues
are known for homogeneous SDE than for general SDE (for example, sharper criteria
for existence and/or uniqueness of solutions). We will see a selection of results for
homogeneons SDE in Chapter 6. Argubly, most SDE encountered i applied math are
homogeneous.

SDE of the above discussed type are the ones we shall focus on and they are more
specifically called diffusion type SDE. This is opposed to a more general form of SDE

o iaiiovisaly, il
(which we will occasionally also encounter) given by

dX(t) = p(t)dt + o(t) dB(t) for te [0,T), X(0)= zo,

where p(t) and o(t) may depend on not only X (t) but on the entire past {1 X(8)}selo.
of X.

There is no general method to find explicit solutions of (diffusion type) SDE ex-
pressed in terms of u, Er and B. On the other hand, when given a candidate to a

solution the procedure to validate the solution is often by use of Itd’s formula.
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5.2 Stochastic Exponential and Logarithm

Let X have stochastic differential. A solution {U (t)}tejo,7) to the (usually non-diffusion
type) SDE

dU(t) = U(t)dX(t) for t€[0,T], U(0)=1,

is called a stochastic exponential of X and denoted £(X). [Note that if the SDE were |

an ODE the solution would be U(t) = eX(=X(0) ] It turns out that the stochastic

exponential exists and is uniquely given by

U(t) = E(X)(t) = eXO-XO=3XIO)  for ¢ ¢ [0, 7).

Pooo J[4) = JFCXLH - Xl9) LXE.]\*)) where 4{ 7\95 =
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Let X have stochastic differential and be strictly positive. A solution {U(t)}sc(o,7)

to the (usually non-diffusion type) SDE

dX(t) = X(t)dU(t) for te[0,T), U(0) =0,

is called a stochastic logarithm of X and d X). [Note that if the SDE were an

ODE the solution would be U(t) = In(X (¢)) —In(X (0)).] It turns out that the stochastic

logarithm exists and is uniquely given by

it
U(t) = L(X)(t) :h{%) + fo g[;,((]s(;) for t € [0,7).
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It is a very useful exercise to establish that £(£(X)) = X — X(0) and E(L(X)) =
X/X(0)

5.3 Solutions to Linear SDE
A general linear (in general non-diffusion type) SDE is given by
et —
dX(t) = (aft) + B(t) X (1)) dt + (y(¢) + o(t) X (t))dB(t) for t € [0.T], X(0)= zo.

Here the coefficients a, 3, v and ¢ are continuous adapted stochastic processes satisfy-
ing appropriate integrability conditions. It is not very hard (albeit a bit notationally

complicated) to show that the solution to the general linear SDE is given by

X(t}zU(t)(:ﬂg«F/O. ()T(S(;)(—)ds+/0{g;dB)

with
t t
U(t) = exp([ (B(s) — 26(s)%) ds +/ 5dB) for t € [0,7].
0 0
One famous example of a linear SDE is the Langevin equation a(t) = -y, 3 =86 =0

and o(t) = o for constants p, o > 0. Another is the stochastic exponent of BM a = 3 =
o =0 and 6(t) = 1. Yet another example is offered by the so called Brownian bridge

s X(t

dX(t) = T

dt+dB(t) for t€[0,T), X(0)=a.

x>
This turns out to simply be the process X (t) = (B(t) + a|B(T =b), that is, Brownian

motion on [0, 7] started at a and forced (or conditioned rather) to finish at b.

5.4 Existence and Uniqueness of Solutions

We will cite two basic results for existence and/or uniqueness of solutions to SDE. They
can both be somewhat strengthened in different ways at the cost of a more complicated

apperance. We do not discuss such improvements.



The first result is the basic existence and uniqueness result for an SDE
dX(t) = u(X(t),t)dt + a(X(t),t)dB(t) for t € [0,T]:
Assume that there exist constants K = K1(N,T') > 0 and Ky = K,(T') > 0 such that
() = p(y, )] + o(2,8) — o(9,6)] < Kala —y| for ¢ € [0,7] and Jal,Jy| < N
for each N > 0 and
iz, )| + oz, t)] < Ko(1 4 |z|) for t € [0,T] and z € R.

In other words the coeflicients are locally Lipschitz with (global) linear growth in the

z-variable uniformly in the t-variable. For any choiche of a non-random initial value
X (0) = xp or a random initial value X (0) = Xp there exists a unique strong solution
{X(t)}tejo,r) to the SDE. If in addition X satisfies E(X2) < oo then it holds that
E( sup X(t)?) < C(1+E(X})),
t€|0,7)

where C' = C'(K,, T is a constant that depends on Ky and 7" only.

The local Lipschitz condition suffices for uniqueness, but not for existence as one
can see, for example, with the ODE dz(t) = x(¢)®dt, 2(0) = 1, with unique solution
x(t) = 1/(1 —1t). It is easy to see that a global Lipschitz condition, that is, K1 = K (T")

not depending on N, implies linear growth.

Obviously the canonical application of the above cited existence and uniqueness
result is to a linear SDE with bounded non-random (to make the SDE diffusion type)
coefficients o, 3,0, : [0,T] = R.

The second basic result only concerns uniqueness and is attributed to Yamada and

_lamacs Ah
Watanabe: Assume that the drift coefficient y is globally Lipschitz and that the diffusion

coefficient ¢ is globally Hélder of order o > 1/2, that is,
lo(z,t) — o(y,t)| < Kslz —y|* for t € [0,7] and z,y € R

for some constant K3 = K3(T). Then the SDE displays strong uniqueness.

The canonical application of the Yamada-Watanabe theorem is to the so called
Girsanov SDE dX (t) = | X (t)|" dB(t), X(0) = 0, with » > 1/2 for which the theorem
yields uniqueness of the solution X = 0.

The criteria/ imposed in the above cited existence and uniqueness results are very far
from necessary: SDE can have very “wild” coefficients [such as, for example, o(z.1) =

||*0%] and still have a well-defined unique solution.

55



5.5 Markov Property of Solutions

More or less in general, solutions to SDE are Markov processes,

If the SDE is time homogeneous then so is the Markov process solution. In |
fact, at least historically, some people called solutions to SDE (diffusion processes) con-
tinuous Markov processes. This indicates that the converse statement that continuous

Markov processes are diffusion processes hold. However we will not discuss this topic.

5.6 Construction of Weak Solutions
P o

A solution to the SDE is called a weak solution if the BM that features in (the solution
to) the SDE is (not given from the beginning but) constructed together with the solution
(can be chosen at liberty). Clearly any strong solution is a weak solution.

An SDE has weak uniqueness if any pair of weak solutions { X1 (¢) };¢(0.7) and { Xa(t) }sejo.r)

~ have common finite dimensional distributions, that is,
P(X;(t1) € B1yev s Xi(tn) € 25) = P(Xa(t1) € 2150 1 Xao(ln) € 25)

=t for z1,...,2n € R, t1,...,tn € [0,T] and n € N.

The difference between strong and weak solutions might seem minor but in fact it
is the other way around: It is from a theoretical perspective substantially easier to find
weak solutions than to find strong solutions. However, for virtually any specific SDE
encountered strong solutions exist when weak solutions do.

There is a famous example of an SDE that has a unique weak solution but no
strong solution, namely the Tanaka SDE dX (t) = sign(X(t))dB(t), X(0) = 0. [Here
sign(0) = 1 as otherwise X (0) = 0 would be a strong solution.| The statement about
the weak solution is not too hard to prove while that for (no) strong solutions requires

a quite sophisticated extension of 1td’s formula to the convex function R 3 z ~ |z| € R.
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The basic existence and uniqueness result for weak solutions to an SDE

v dX(t) = p(X(t),t)dt + o(X(t),t)dB(t) for t € [0,7], X(0)= o,

lf is as follows: Assume that o(z,t) is strictly positive and continuous and that both
i p(z,t) and o(zx,t) have linear growth in the z-variable (uniformly in the t-variable).
Then the SDE has a unique solution’ Note that the
B | Lipschitz condition for the coefficients featuring in the basic existence and uniqueness
result for strong solutions is not needed for weak solutions. ——r
[ There are many connections between solutions to SDE and solutions to partial differ-

ential equation (PDE) as we shall see. The generator of an SDE is the partial differential

operator
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5.#% Backward and Forward Equations

Let Ly be the generator of the SDE
dX(t) = p(X(t),t)dt + o(X(t),t)dB(t) for t € [0,T].

A fundamental solution p:Rx [0.T] — R of the so called Kolmogorov backward PDE

Qz(a-‘—;-ﬂ + Lsp(a:,s) =0

is a non-negative function p(t,y,z,s) for z,y € R and 0 < s < t < T such that

u(z,s) = / " Gt 3, 8y dy

—00
is bounded and [regarded as a function of (z, s)] solves the PDE for any bounded function
g:R — R with

li 8] = )
s1%1 u(z,s) = g(x)

Under technical conditions on the coefficients y and o a strictly positive fundamental
solution p(y,t, x, s) to the backward equation exists. T hat fundamental solution
solves the backward equation [regarded as a function of (z,s)] as well as the so called
forward equation

9 x

ap 5_2(0(?;,15)2 p)

B
o Yo\ T - %(n(y,i)p) =0

[regarded as a function of (y,t)]. (Here the * in the notation stems from that L* is the

adjoint differential operator to L in a certain sense.) Moreover there exists a Markov

5.3

process {X(t)}ieo.r) that has p(y,t,z,s) as transition PDF and is a weak solution to

the SDE. (This of course requires a construction of a BM B associated with the Markov
process X such that X solves the SDE.)
And so we have found a method to construct weak solutions to SDE based on theory

for PDE and Markov process.

q

5.% Stratonovich Stochastic Calculus

There is an alternative to the so called Itd stochastic calculus we have developed so
far labeled Stratonovich stochastic calculus. The idea here is to alter the definition of
the stochastic integral involved so that the rules from ordinary calculus (such as, for
example, integration by parts) come into play again. The underlying theory still is
the same though, as are the Itd processes involved, being the sum of an It6 integral
process and an (absolutely) continuous FV process. It is just a matter of expessing

them differently.



5.9

The Stratonovich integral process { fnt X 0Y }hejor) of an Itd process {X (t) Hepo, 1)
with respect to another Ité process {Y(t) }eo,r (both built with and adapted to the

filtration of the one and same BM B) is defined as
t t
{[ X@Y} = {/ Xdy+1[x,y}(t)} .
0 tefo.T] 0 2 tefo.7]
Written on differential form this becomes
1
X(t) oY (t) = X(t)dY (¢) + 3 dlX,Y](t) for te [0,T).

As X is continuous it follows from what we learned about It integrals of one Ito

process with respecect to another together with the definition of variation that
t
5 Z(X (6)+ XE W) - Y(E) e [ Xo¥
0

for a sequence of partitions 0 = tp <...<ty =tof[0,t] such that maxi<i<n iy —tf 1 1 0.

Expressed with Stratonovich differentials the chain rule becomes
d(X ()Y (t)) = X(t)dY (t) + Y (t) dX (t) + d[ X, Y](t) = X(t)8Y (t) + Y (t) 80X (¢t).
Making use of the fact that
df (X)), X ()] = (/"(X (1) dX () + 5 f"(X () dIX](£)) dX (t) = f"(X(t)) d[X])(1)
for f: R — R of class C* it further follows that Ité’s formula (for f € C3) simplifies to
df(X(8) = f'(X () dX () + 3 f"(X () d[X](t) = f/(X(£)) DX ().

By mere insertion in the definition on differential form of a Stratonovich (integral)

diffusion type SDE

dX(t) = p(X(t),t)dt + o(X(t),t) OB(t) for t € [0, T

and using that

do
dlo (X (8).6), BO)] = o(X(6),6) 5 (X (1).1) &+
we see that the equation translates to the It (integral) SDE

a(X(t),t)%(X(t),t)) dt + (X (t),t)dB(t) for t €[0,T).

dX(t) = (u(X(t),r) 3



