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6 Diffusion Processes

@ .

6.1 Martingales and Dynkin’s Formula
Consider a general SDE of dif.fusion type

dX () = p(X(t),t)dt + o(X(t),t)dB(t) for t € [0,T]
with generator
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Ito’s formula for f(X(¢),t) with f € C*! (when X solves the SDE) can be expressed

with help of the generator as

a0 = (L@, + G Ja+ (G0 o, n ase

And so it follows that under suitable technical conditions the following process is a

[ ) ‘
{f(X(t),t) fo (L I+ ae)(X(S"‘” ds}fe[oﬂl

As an immediate collorary to the previous paragraph it follows that (under technical

martingale:

conditions) {f(X(t),t)}icjo,r) is a martingale if f solves the backward equation (L; +
F%) f(z,t) = 0. Although just a way of rewriting things we already know this observation
can be surprisingly useful.

Just by taking expectations of what we have found out above, it follows that if X
is started deterministically X (0) = x¢ it holds for f € C*! (under technical conditions)

that

E(f(X(1).1)) :f(ro,iD)+E(f0 (L f+ d—j)('((s),s)ds) for t € [0,T).

“This simple result can extended to ¢t = 7 where

7 is a bounded stopping time with 7 € [0,7]. This extended version of the result is

called Dynkin’s . (after the important contributer to SDE theory E.B. Dynkin)

6.2 Calculation of Expectations and PDE

Consider a general SDE of diffusion type
dX (t) = u(X(t),t)dt + o(X(t),t)dB(t) for t€ [0,T]

with generator
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where X solves the SDE. (Just time shift the coefficients to get an SDE that starts

at time 0 instead of time t if you want to.) As the backward equation ensures that

‘X -
\/;5 {f(X(5),8)}set,) is a martingale we have
) P
8 ~—=
§ vt Blg(X(D)|F) = E(S(X(T), T)F) = f(X(0),8) for t €[0T,
=
2 \"; Now apply the Markov property to the left-hand side to obtain
<5
P L3 E(g(X(T))|X(t) = z) = f(z,t) for te [0,T).
W |
52
1/‘1 RV Conversely f(z,t) = E(g(X(T))|X(t) = z) solves the backward equation terminal
Crﬂ\ value problem.
X! ,
é-_):-. There exist several generalisations of the first of the above mentioned basic rela-
(743 tion between solution to the SDE and to the corresponding backward equation out of
_‘_.ﬁ

~

~ . which we will mention two. (The proofs are similar to the proof we did above but just

notationally slightly more complicated.)

e Under technical condition, the solution to the terminal boundary problem

(Lt +g_t)f(m't):¢(m) for t€ [0,T], f(z,T)=g(z)
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<) (if it exists) must be given by
™
il T
?ﬁ fla, t) = E(Q{X(T)) - f (X (s))ds | X(t) = J‘) for t € (0,7,
5 t
™ where X solves the SDE.
— 7/_\
_*; e (FEYNMAN-KAC FormuLA) Under technical condition, the solution to the ter-
/::E minal boundary problem
b 7]
C (Lt + 3‘?) fla,t) =728 f(z,2) for t€[0,T], fle.T)=glz),
L '
n (if it exists) must be given by
=+ T
Vi flzt) = E(g(X(T))exp(—/ r(X(s), s) ds) ' X(t) = a:) for t € [0,T],
B t
e

where X solves the SDE.
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6.3 Time Homogeneous Diffusions

Consider a time homogeneous SDE of diffusion type

(1)) dt + o(X(t))dB(t) for t € [0,T).

dX(t) = u(X
Because of (time) homogeneity the generator now simplifies to

ag\xr 2
Li@) = (Lh@ = T (@) + pta)r @)

Itd’s formula for f(X (¢
with help of the generator as

i df(X(8)) = LF(X(8)) dt + f'(X

{f(X(t)) " /Dt Lf(X(s)) ds}zE[O,Tl‘

(t))dB(t) for te[0,T].

Z (1)) emp(-S () ,8)de) | X(H=x)
2 09 g =)
k-

R))
%2 g/'{*“@?' N

(t)) with f € C* (when X solves the SDE) can be expressed

It follows that under suitable technical conditions the following process is a martingale

Weak solutions can be found by solving the corresponding martingale problem (to find

an X that makes this process a martingale for a suitable class of functions [ € %)

The existence and uniqueness criteria for weak solutions that are

Markov is

as before with the ¢ parameter of the coefficients pu(z,t) and o(x,t) removed. Further

it follows from applying time shifts that if there exists a unique weak solution for every

starting value X (0) = z, then the transition CDF will be homogeneous

P(y,t,z,8) = P(y,t — 8,2,0) = P(t — s,z,y) for t €

Of course, then also the corresponding transition PDF p(y,t, z,s)

homogeneous if it exists (which it usually does)

(s, 7).

= p(t—s,x,y) will be



6.t

Under appropriate technical conditions
it follows from what we did for general (not necessarily time homogeneous) SDE that

p(t,‘a‘:,'y) satisfies the Kolmogorov backward equation

ap(t, z,y) dp(t,x,y) B o(x)? 82p(t, z,y) X (I)E)p(t,a:,y) B
ot ot 2 0a? “ or

= Lp(t.:[’,y) =

Note that the time variable { now handles both the backﬁard time variable s and the
forward time variable t of p(y,t, z,s) so that the sign of the time derivative changes.

The corresponding Kolmogorov forward equation becomes

Op(t,z,y) & (rf{y)2
2

op(t, z,y) o
ot ay?

8t - L p(t,;c,y)r-

a
p(t‘ﬂ:,y)) + éa(u(y}p(tvr,y) = 0.

There is a famous result that completely resolves the existence and uniqueness issues

for a homogeneous SDE with zero drift due to Engelbert and Schmidt: The SDE
dX(t) =o(X(t))dB(t) for t€[0,T], X(0)= =z,

has a non-exploding (see a later section for explanation of this term) weak solution for
every initial value x¢ if and only for every z it holds that

f_—&(;ij:ﬁ:oo for a>0 = o(z)=0.

Moreover the SDE has a unique (non-exploding) weak solution for every initial value
xo if and only for every z it holds that

/—u—a—(—‘-rd_'y_‘—y)zzzoo for a >0 < o(x) =10
These results have no counterpart for non-homogeneous SDE. However, by means of
application of Ité’s formula conclusions can also be drawn about homogeneuous SDE
with non-zero drift. We will see how a result for SDE with zero drift can be carried

over to non-zero drift SDE in the next section.
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6.5 Explosion

Let {X(t)}+>0 sol\;e the homogeneous SDE

S aX(t) = (X () dt+ o(X(2)dB(t) for t>0, X(0) =z
For simpler notation we also assume that the values of X are not restricted to any finite
or half finite interval (a, 3) C R. However, the things we do under the latter assumption
can be extended in a more or less obvious way to the general case.

Let 7, = inf{t > 0: | X (¢)| = n}. Clearly the limit limy,_,0c 70 = 7o exists (although
possibly T = o). We say that X explodes if P(5 < 00) > 0. Note that on the event
{Too < 00} we have |X(7oo)| = limp e |X(7n)| = co which motivates the preceding
language.

Clearly, under appropriate conditions on p and o (making no move of X impossible),
X explodes started at a any x € R if X explodes started at a particular .

Now assume that o is strictly positive and continuous and that 4 is bounded on
finite intervals (which are sufficient appropriate conditions in the previous paragraph).
Given any zg € R, the diffusion X explodes when started at a particular = € R if and
only if X explodes started at any x € R if and only if at least one of the following two

integrals are finite

[Cool- [ 2 ) ([ samen( [ S 2) )
/m ex(- / i dy) U S (/y e dz) d""’) >

Because of the many integrals (primitive functions) involved and that it often is

and

impossible to judge just by inspection if the above two integrals are finite or not, it can
be a quite cumbersome task to check whether the above two integrals are finite or not.
The ODE dz(t) = z(¢)? dt, z(0) = 1, with solution z(t) = 1/(1 —t) for t € [0,1)

explodes. No SDE with zero drift (and strictly positive continuous o) explodes.

6.6 Reccurence and Transience

Let {X(t)}+>0 solve the homogeneous SDE
dX(t) = p(X () dt + a(X(t))dB(t) for t>0, X(0)=u.

For simpler notation we also assume that the values of X are not restricted to any finite
or half finite interval (o, 8) C R.

The starting point # € R i called reccurent if X (f;) = z for a sequence of (usually

_P! ¥

random) times 0 < tg < t; < ... such that t; — oo as n — oo with probability 1. If

all starting points are reccurent then X is called reccurent. [To require that X visits x

infinitely many times is not the same thing because the (usually) infinite variation of

X can give infinitely many visits in a bounded interval.]

6.5
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The starting point z € R is called transient if | X (t)| — oo as t — co with probability
P
1. If all starting points are transient then X is called transient.
. .

We now make the same assumption that were used in the existence and uniqueness
criteria for weak solutions that are strong Markov processes to the SDE: Let o be
strictly positive and continuous and let both p and o have linear growth. Then if there
is one reccurent starting point X then the diffusion is reccurent. Further, if there are no
reccurent starting points, then the diffusion is transient. Moreover, given any zp € R,

the diffusion is reccurent if and only if the following two integrals both are infinite

f_z exp(— fm: i't(tgg dy) dz and /ﬂ: exp(— _/: i’;ﬁg dy) dr.
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6.8 Stationary Distributions

Let {X(t)}>0 solve the homogeneous SDE
dX(t) = (X (t))dt + o(X(t))dB(t) for t >0, X(0)=

Assume that X is a Markov process with transition CDF P(t,z,y). For simpler notation
we also assume that the values of X are not restricted to any finite or half finite interval
(o, B) CR.
A CDF II: R — [0,1] is called a stationary CDF or an invariant CDF for X if
)
II(y) =/ P(t,z,y)dll(z) for y € R.

=00

This means that if X(s) has CDF II for an s > 0, then also X (¢ + s) has CDF II for
t>0.

Assume that the transition CDF P(t, z, y) has a transition PDF p(t, z,y) = B%P(t, z,y).
A PDF 7 : R — [0,00) is called a stationary PDF or an invariant PDF for X if

m(y) = foo p(t,z,y)m(z)de for y € R.

20

This means that if X(s) has PDF 7 for an s > 0, then also X (¢ + s) has PDF  for

t>0. Making use of the formula
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for. the joint PDF of (X (t1),..., X (tn)) for 0 < #; < --- < t,, it follows that if X, has

a stationary PDF m then X is a stationary process, which is to say that

By applying the Kolmogorov forward equation to the definition of a stationary PDF

we obtain an ODE that 7 must satisfy:
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Formally a solution to this ODE is given by [_// .

c 2
i) = L exp( LO J!(LSZ) dy) for z € R.

Here " > 0 and 29 € R are constants that are determined by the normalisation

o0
oo m(z)dz = 1. [We really have only one “free” constant in the above solution to
the second order ODE before normalisation (as C' and zy “interact”): The reason is
that the second free constant in the general solution to the ODE disappears to even

make normalisation possible.]

Under technical conditions the SDE has the stationary PDF of the previous para-
graph provided that the normalisation is possible and that the following two integrals

both are infinite:
Ea * 2u(y) ) f (]"M(y) )
exp| — dy | dz and exp —=dy | dz.
/_m p( e 0?2 Y o o2 "

This of course is the necessary and sufficient criteria for rectirrence of a diffusion we

have seen earlier.
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If there exists a (non probability) measure v on (R, B) with v(R) = co such that
oQ e o]
v(B) =/ (/ dP(t,:c,y))du(w) -/ P(t,x,B) dv(z) for BeB,
- yeB —00
then v is called an invariant measure for X. For example, while BM does not have
a stationary CDF or PDF it has the usual Euclidian measure of length dv(z) = dx
as invariant measure. This follows from the fact that p(t,z,y) for BM is a PDF both

viewed as a function of y and as a function of .



