TMS165/MSA350 Stochastic Calculus Written home exam Monday 4 January 2021 2-6 PM

Teacher: Patrik Albin 0317723512 palbin@chalmers.se.
Aids: All aids are permitted. (See the Canvas course "Omtentamen 1 Modul: 0104, TMS165 / MSA350" with instructions for this exam for clarifications.)

Grades: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4,21 points (70%) for grade VG and 24 points (80%) for grade 5, respectively.
Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. Find $\mathbf{E}\{X \mid \sigma(Z)\}$ when X and Y are independent unit mean exponentially distributed random variables and $Z=X+Y$. (5 points)

Task 2. Consider a stochastic integral process $\left\{\int_{0}^{t} X \Delta B\right\}_{t=0}^{\infty}$ defined by $\int_{0}^{t} X \Delta B=$ $\lim _{\max _{1 \leq i \leq n}} t_{i}^{n}-t_{i-1}^{n} \downarrow 0 \sum_{i=1}^{n} X\left(t_{i}^{n}\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)$ for grids $0=t_{0}^{n}<t_{1}^{n}<\ldots<t_{n}^{n}=t$ and continuous adapted processes $\{X(t)\}_{t \geq 0}$. Express $\int_{0}^{t} B^{2} \Delta B$ as an Itô process.
(5 points)
Task 3. Does the Itô process $X(t)=B(t)^{6}$ satisfy any diffusion type SDE?
(5 points)
Task 4. For which choices of the parameter $\alpha>0$ does the $\operatorname{SDE} d X(t)=X(t)^{\alpha} d t+$ $X(t) d B(t), X(0)=1$, have a stationary distribution? (5 points)

Task 5. Let $X(\omega)=\omega$ for $\omega \in \Omega=\mathbb{R}$ and $\mathbf{P}(A)=\int_{A} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} d x$ for (Borel sets) $A \subseteq \mathbb{R}$. What is the probability distribution of X under \mathbf{P} ? Find two different equivalent to \mathbf{P} probability measures \mathbf{Q}_{1} and \mathbf{Q}_{2} on the (Borel) subsets of \mathbb{R} such that $\mathbf{E}_{\mathbf{Q}_{1}}\{X\}=\mathbf{E}_{\mathbf{Q}_{2}}\{X\}=1$ and $\mathbf{E}_{\mathbf{Q}_{1}}\left\{X^{2}\right\}=\mathbf{E}_{\mathbf{Q}_{2}}\left\{X^{2}\right\}=2 . \quad$ (5 points)

Task 6. Which SDE does the iterative scheme $Y_{i+1}=Y_{i}+Y_{i+1}\left(t_{i+1}^{n}-t_{i}^{n}\right)+Y_{i+1} \times$ $\left(B\left(t_{i+1}^{n}\right)-B\left(t_{i}^{n}\right)\right)$ for $i=0, \ldots, n-1, Y_{0}=1$, become a solution of as $0=t_{0}^{n}<t_{1}^{n}<\ldots<$ $t_{n}^{n}=t$ satisfies $\max _{1 \leq i \leq n} t_{i}^{n}-t_{i-1}^{n} \downarrow 0$? How can one be sure the scheme converges?

TMS165/MSA350 Stochastic Calculus Solutions to Written Exam 4 January 2021

Task 1. As $f_{X, Z}(x, z)=\mathrm{e}^{-z}$ for $0 \leq x \leq z$ and $f_{Z}(z)=z \mathrm{e}^{-z}$ for $z \geq 0$ we have $\mathbf{E}\{X \mid Z=z\}=\int_{-\infty}^{\infty} x f_{X, Z}(x, z) / f_{Z}(z) d x=\int_{0}^{z} x / z d x=z / 2$ giving $\mathbf{E}\{X \mid \sigma(Z)\}=Z / 2$.

Task 2. $\int_{0}^{t} B^{2} \Delta B \leftarrow \sum_{i=1}^{n} B\left(t_{i}^{n}\right)^{2}\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)=\sum_{i=1}^{n}\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)^{3}+$ $2 \sum_{i=1}^{n} B\left(t_{i-1}^{n}\right)\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right)^{2}+\sum_{i=1}^{n} B\left(t_{i-1}^{n}\right)^{2}\left(B\left(t_{i}^{n}\right)-B\left(t_{i-1}^{n}\right)\right) \rightarrow 0+2 \int_{0}^{t} B(s) d s+$ $\int_{0}^{t} B^{2} d B$.

Task 3. As $d X(t)=6 B(t)^{5} d B(t)+15 B(t)^{4} d t=6 B(t)^{5} d B(t)+15 X(t)^{2 / 3} d t$ where $B(t)^{5}$ is not a function of $X(t)$ the answer is negative: $X(t)$ doesn't satisfy a diffusion type SDE.

Task 4. We can choose a constant $C>0$ such that

$$
\pi(x)=\frac{C}{\sigma(x)^{2}} \exp \left\{\int_{1}^{x} \frac{2 \mu(y) d y}{\sigma(y)^{2}}\right\}=\left\{\begin{array}{cl}
C x^{-2} \exp \left\{2\left(x^{\alpha-1}-1\right) /(\alpha-1)\right\} & \text { for } \alpha \neq 1 \\
C & \text { for } \alpha=1
\end{array}\right.
$$

satisfies $\int_{0}^{\infty} \pi(x) d x=1$ if and only if $\alpha \in(0,1)$. In that case

$$
\int_{0}^{1} \exp \left\{-\int_{1}^{x} \frac{2 \mu(y) d y}{\sigma(y)^{2}}\right\} d x=\int_{1}^{\infty} \exp \left\{-\int_{1}^{x} \frac{2 \mu(y) d y}{\sigma(y)^{2}}\right\} d x=\infty
$$

so that $\pi(x)$ is the stationary PDF.
Task 5. As shown in an exercise of the course X is $\mathrm{N}(0,1)$. Further $\mathbf{E}\{X\}=1$ and $\mathbf{E}\left\{X^{2}\right\}=2$ under, e.g., $\mathbf{Q}_{1}(A)=\int_{A} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-(x-1)^{2} / 2} d x$ and $\mathbf{Q}_{2}(A)=\int_{A} \frac{1}{\sqrt{2}} \mathrm{e}^{-\sqrt{2}|x-1|} d x$.

Task 6. The SDE $d X(t)=2 X(t) d t+X(t) d B(t), X(0)=1$, has $[X(t), t]=0$ and $[X(t), B(t)]=\int_{0}^{t} X(s) d s$, so that the iterative scheme solves this SDE. The coefficients of the SDE are globally Lipschitz in the space variable uniformly in time ensuring convergence of the Euler scheme $Y_{i+1}=Y_{i}+2 Y_{i}\left(t_{i+1}^{n}-t_{i}^{n}\right)+Y_{i}\left(B\left(t_{i+1}^{n}\right)-B\left(t_{i}^{n}\right)\right)$ to $X(t)$ as $\max _{1 \leq i \leq n} t_{i}^{n}-t_{i-1}^{n} \downarrow 0$. But then the difference between the schemes

$$
\begin{aligned}
& {\left[Y_{i}+Y_{i+1}\left(t_{i+1}^{n}-t_{i}^{n}\right)+Y_{i+1}\left(B\left(t_{i+1}^{n}\right)-B\left(t_{i}^{n}\right)\right)\right]-\left[Y_{i}+2 Y_{i}\left(t_{i+1}^{n}-t_{i}^{n}\right)+Y_{i}\left(B\left(t_{i+1}^{n}\right)-B\left(t_{i}^{n}\right)\right)\right]} \\
& \quad \rightarrow[X(t), t]-\int_{0}^{t} X(s) d s+[X(t), B(t)]=0
\end{aligned}
$$

