TMS165/MSA350 Stochastic Calculus
 Written home exam Friday 20 August 2021 8.30-12.30

TEACHER: Patrik Albin 0317723512 palbin@chalmers.se.
Aids: All aids are permitted. (See the Canvas course "Omtentamen 2 Modul: 0104, TMS165 / MSA350" with instructions for this exam for clarifications.)

GRADES: 12 points (40%) for grades 3 and G, 18 points (60%) for grade 4,21 points (70%) for grade VG and 24 points $(80 \%$) for grade 5 , respectively.

Motivations: All answers/solutions must be motivated. Good Luck!
Througout this exam $B=\{B(t)\}_{t \geq 0}$ denotes a Brownian motion.
Task 1. Find $\mathbf{E}\{X \mid \mathcal{G}\}$ when X is a standard normal distributed random variable and $\mathcal{G}=\{\emptyset,\{X \geq 0\},\{X<0\}, \Omega\} . \quad$ (5 points)

Task 2. Is $\left\{\int_{0}^{t} \mathrm{e}^{B(s)^{2}} d B(s)\right\}_{t \geq 0}$ a martingale? (5 points)
Task 3. Find the quadratic variation process of the Itô process $\left\{B(t) \int_{0}^{t} B(s) d B(s)\right\}_{t \geq 0}$.

Task 4. Solve the SDE $d Y(t)=3 Y(t)^{1 / 3} d t+3 Y(t)^{2 / 3} d B(t)$ for $t \geq 0$ where $Y(t)^{\rho}=$ $|Y(t)|^{\rho} \operatorname{sign}(Y(t)) . \quad$ (5 points)

Task 5. Can a standard normal random variable be made a unit mean Poisson distributed random variable by means of change of probability measure?

Task 6. Which SDE is the scheme $X_{n+1}=X_{n}-X_{n+1}\left(t_{n+1}-t_{n}\right)+\left(B\left(t_{n+1}\right)-B\left(t_{n}\right)\right)$ for $n=0, \ldots, N-1,0=t_{0}<t_{1}<\ldots<t_{N}=T$, an approximative numerical solution of? (5 points)

TMS165/MSA350 Stochastic Calculus Solutions to Written Exam 20 August 2021

Task 1. $\mathbf{E}\{X \mid \mathcal{G}\}=2 \int_{0}^{\infty} x \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2} d x$ for $\omega \in\{X \geq 0\}$ and $\mathbf{E}\{X \mid \mathcal{G}\}=2 \int_{-\infty}^{0} x \frac{1}{\sqrt{2 \pi}}$ $\times \mathrm{e}^{-x^{2} / 2} d x$ for $\omega \in\{X<0\}$ as that is easily seen to fit with the defining requirement that $\mathbf{E}\{X \mid \mathcal{G}\}$ shall be \mathcal{G}-measurable with $\mathbf{E}\left\{\mathbf{E}\{X \mid \mathcal{G}\} \mathbf{1}_{B}\right\}=\mathbf{E}\left\{X \mathbf{1}_{B}\right\}$ for $B \in \mathcal{G}$.

Task 2. As $\left\{\mathrm{e}^{B(t)^{2}}\right\}_{t \in[0, T]}$ is not in E_{T} for T large enough this question cannot be answered by what we have learnt.

Task 3. $\int_{0}^{t}\left(\left(\int_{0}^{s} B d B\right) d B(s)+B(s)^{2} d B(s)+B(s) d B(s)^{2}\right)^{2}=\int_{0}^{t}\left(\left(\int_{0}^{s} B d B\right)^{2}+2\left(\int_{0}^{s} B\right.\right.$ $\left.d B) B(s)^{2}+B(s)^{4}\right) d s$.

Task 4. $X(t)=Y(t)^{1 / 3}$ gives $d X(t)=\ldots=d B(t)$ so that $X(t)=B(t)+X(0)$ and $Y(t)=\left(B(t)+Y(0)^{1 / 3}\right)^{3}$.

Task 5. No because a normal probability measure is singular wrt. a Poisson probability measure.

Task 6. Since $[X(t), t](t)=0$ the scheme solves the same SDE as the scheme $X_{n+1}=$ $X_{n}-X_{n}\left(t_{n+1}-t_{n}\right)+\left(B\left(t_{n+1}\right)-B\left(t_{n}\right)\right)$ which in turn is the Euler scheme for the Langevin SDE $d X(t)=-X(t) d t+d B(t)$ for $t \in[0, T]$.

