Stochastic Calculus Part II Fall 2009

Hand in 5

Let $\left\{N_{t}\right\}_{t \geq 0}$ be a Poisson process with intensity $\lambda=1$.
Let $M_{t}=N_{t}-t$ be the compensated Poisson process.
1 Calculate $Y_{t}=\int_{0}^{t} M_{s-} d M_{s}$.
What is the quadratic covariation $[Y, M]_{t}$? (2 points)
2 Let $\Lambda_{t}=e^{-t} 2^{N_{t}}$. Calculate $\mathbb{E}\left[\Lambda_{t}\right]$ and $\operatorname{Var}\left(\Lambda_{t}\right)$.
Show that Λ_{t} is a martingale.
Simulate a trajectory of Λ_{t}. (2 points)
3 As you know the Compound Poisson Process (CPP) $\left\{X_{t}\right\}_{t \geq 0}$ can be defined as

$$
X_{t}=X_{0}+\sum_{i=1}^{\infty} \mathbb{I}\left(\tau_{i} \leq t\right) \xi_{i}=X_{0}+\sum_{i=1}^{N_{t}} \xi_{i}
$$

where the ξ_{i} are iid random variables, independent of $\left\{N_{t}\right\}_{t \geq 0}$ (which has jump times τ_{i}).
Let $X_{0}=0$ and ξ_{i} be iid $N(0,1)$.
a) Show, from $E\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s}$, that X_{t} is a martingale. (1 point)
b) Calculate $E\left[X_{t}\right]$ and $\operatorname{Var}\left(X_{t}\right)$. (1 point)
c) Find estimates of $E\left[X_{t}\right]$ and $\operatorname{Var}\left(X_{t}\right)$ by doing simulations. (1 point)
d) Show that the characteristic function of X_{t} is given by

$$
\phi(u):=E\left[e^{i u X_{t}}\right]=e^{t(\phi \xi(u)-1)}=e^{t\left(e^{-u^{2} / 2}-1\right)}
$$

The fact that the characteristic function of the ξ_{i} 's is given by $\phi_{\xi}(u)=$ $e^{-u^{2} / 2}$ does not have to be shown. (1 point)
e) Find the moment generating function of X_{t}. (1 point)
f) Calculate $E\left[X_{t}^{4}\right] / 3 t$. (1 point)

4 The Weibull distribution is widely used for modelling life times of objects. Its density and cdf, for $\alpha, \beta>0$ and $\nu \in \mathbb{R}$, are given by

$$
f(x ; \alpha, \beta, \nu)= \begin{cases}0 & x \leq \nu \\ \frac{\beta}{\alpha}\left(\frac{x-\nu}{\alpha}\right)^{\beta-1} \exp \left\{-\left(\frac{x-\nu}{\alpha}\right)^{\beta}\right\} & x>\nu\end{cases}
$$

and

$$
F(x ; \alpha, \beta, \nu)= \begin{cases}0 & x \leq \nu \\ 1-\exp \left\{-\left(\frac{x-\nu}{\alpha}\right)^{\beta}\right\} & x>\nu\end{cases}
$$

respectively (where β is the shape parameter, α is the scale parameter, and ν is the location parameter).

Just as in the CPP case let $\left\{X_{t}\right\}_{t \geq 0}$ be given by

$$
X(t)=X(0)+\sum_{n=0}^{\infty} \mathbb{I}\left(\tau_{i} \leq t\right) \xi_{i},
$$

However, now let the interarrival times $\tau_{i+1}-\tau_{i}$ be iid Weibull $(\alpha, \beta, \nu)=$ Weibull $(\alpha, 1,0)$-distributed, for some $\alpha>0$, and let the jumps ξ_{i} be iid $\mathrm{N}(\mu, \sigma)$ distributed.
a) Find the compensator $A(t)$ of $X(t)$. (1 point)
b) Simulate one trajectory of $X(t)$ and one of $X(t)-A(t)$. Also simulate estimates of $E[X(t)]$ and $E[M(t)]=E[X(t)-A(t)]$. point)
c) Give an example of a possible situation where one could use $X(t)$ as a modelling tool. (1 point)

