5. Limit theorems

5.1 Law of large numbers

Ex 1: coin tossing

Number of heads $X \sim \text{Bin}(n, 1/2)$ in n tossings proportion of heads $X/n \to 1/2$ as $n \to \infty$ since $\mathrm{E}(X/n) = 1/2$ and $\mathrm{Var}(X/n) = 1/(4n) \to 0$

Chebyshev's inequality

given
$$E(X) = \mu$$
 and $Var(X) = \sigma^2$
 $P(|X - \mu| > \epsilon) \le \sigma^2/\epsilon^2, \forall \epsilon > 0$

Proof

$$E(1_{\{|X-\mu|>\epsilon\}}) \le E(\frac{(X-\mu)^2}{\epsilon^2}1_{\{|X-\mu|>\epsilon\}})$$

Theorem LLN

let
$$\bar{X} = \frac{1}{n}(X_1 + \ldots + X_n)$$
 and X_1, \ldots, X_n are independent with $E(X_i) = \mu$, $Var(X_i) = \sigma^2$ then $P(|\bar{X} - \mu| > \epsilon) \to 0$, $n \to \infty$, $\forall \epsilon > 0$

<u>Proof</u>

 $\operatorname{Var}(\bar{X}) = \sigma^2/n$ apply Chebyshev's inequality

Ex 2: last ID digit

Collect the last ID digits in the class X_1, \ldots, X_{30} ten sample counts Y_0, Y_1, \ldots, Y_9

Sample mean

$$\bar{X} = \frac{1}{30}(X_1 + \ldots + X_{30}) = \frac{1}{30}(Y_1 + 2Y_2 + \ldots + 9Y_9)$$

Ex 3: Monte-Carlo integration

Numerically compute $\int_0^1 e^{x^2} dx \approx \frac{1}{1000} \sum_{i=1}^{1000} e^{X_i^2}$ where X_1, \dots, X_n are independent U(0, 1) so that $E(e^{X_i^2}) = \int_0^1 e^{x^2} dx$

5.2 Central Limit Theorem

Ex 2: last ID digit

$$(X_i + 1) \sim U(10), Var(X_i) = 99/12 = 8.25$$

 $Var(\bar{X}) = 8.25/30 = 0.275 = (0.524)^2$
observe the difference $\bar{X} - 4.5$

Theorem CLT

let $S_n = X_1 + \ldots + X_n$ and X_1, \ldots, X_n are independent with $E(X_i) = \mu$, $Var(X_i) = \sigma^2$ then $P(\frac{S_n - n\mu}{\sigma\sqrt{n}} \le x) \to \Phi(x), n \to \infty, \forall x$ Proof: mgf method, assume $\mu = 0, \sigma^2 = 1$ $M(t) = E(e^{tX_i}), M(t) = 1 + \frac{1}{2}t^2 + o(t^2), t \to 0$ $E(e^{tS_n/\sqrt{n}}) = M^n(\frac{t}{\sqrt{n}}) \sim (1 + \frac{t^2}{2n})^n \to e^{t^2/2}$

Normal approximations

sample mean $\bar{X} \approx \mathrm{N}(\mu, \frac{\sigma^2}{n})$ $\mathrm{Bin}(n, p) \approx \mathrm{N}(np, npq), \, np \geq 5, \, nq \geq 5$ $\mathrm{Pois}(\lambda) \approx \mathrm{N}(\lambda, \lambda), \, \lambda \geq 5$ $\mathrm{Hg}(N, n, p) \approx \mathrm{N}(np, npq \frac{N-n}{N-1}), \, np \geq 5, \, nq \geq 5$ $\mathrm{Gamma}(\alpha, \lambda) \approx \mathrm{N}(\alpha/\lambda, \alpha/\lambda^2) \text{ for large } \alpha$

Ex 4: diversification experiment

Three options of a special study support

- a) take 4500 SEK
- b) toss a coin and get 10000 SEK in case of heads
- c) toss 10000 one-SEKs and collect all heads-up coins Amount of money collected in the last case

 $X \sim \text{Bin}(10000, 0.5)$, three-sigma rule: 5000 ± 150

Ex 5: aspirin teatment

 $X = \#\{\text{heart attacks in the placebo group}\}$

Assuming no aspirin effect

$$X \sim \text{Hg}(22071, 293, 0.4999) \approx \text{N}(146.48, 72.28)$$

$$P(X \ge 189) \approx 1 - \Phi(\frac{189 - 146.48}{8.50}) = 1 - \Phi(5)$$

= 0.0000003 statistically significant aspirin effect

5.3 χ^2 and t distributions

Chi square distribution χ_1^2 with 1 degree of freedom

$$Z^2 \sim \chi_1^2$$
, if $Z \sim N(0, 1)$

transformed r.v.
$$\Rightarrow \chi_1^2 = \text{Gamma}(1/2, 1/2)$$

Chi square distribution with $k \geq 1$ degrees of freedom

$$Z_1^2 + \ldots + Z_k^2 \sim \chi_k^2$$
, if independent $Z_i \sim N(0, 1)$

$$\chi_k^2 = \text{Gamma}(k/2, 1/2), \, \chi_2^2 = \text{Exp}(1/2)$$

$$mgf M(t) = (1 - 2t)^{-k/2}$$

$$f(x) = \frac{1}{2^{k/2}\Gamma(k/2)} x^{(k/2)-1} e^{-x/2}, \ \mu = k, \ \sigma^2 = 2k$$

Sample mean and sample variance

Random sample from $N(\mu, \sigma^2)$ independent r.v. $(X_1, \dots, X_n), X_i \sim N(\mu, \sigma^2)$ sample mean $\bar{X} = \frac{X_1 + \dots + X_n}{n} \sim N(\mu, \frac{\sigma^2}{n})$ sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$

Theorem A

given a random sample from $N(\mu, \sigma^2)$ \bar{X} is independent of vector $(\bar{X} - X_1, \dots, \bar{X} - X_n)$ Proof: mgf method, assume $\mu = 0, \sigma^2 = 1$ $E(\exp\{s\bar{X} + \sum_{i=1}^n t_i(X_i - \bar{X})\})$ $= E(\exp\{\sum_{i=1}^n (sn^{-1} + t_i - \bar{t})X_i\})$ $= \prod_{i=1}^n \exp\{(sn^{-1} + t_i - \bar{t})^2/2\}$ $= \exp\{\frac{s^2}{2n} + \frac{1}{2}\sum_{i=1}^n (t_i - \bar{t})^2\}$ $= E(e^{s\bar{X}})E(\exp\{\sum_{i=1}^n t_i(X_i - \bar{X})\})$

Theorem B

random sample from N $(\mu, \sigma^2) \Rightarrow (n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$ Proof: assume $\mu=0, \ \sigma^2=1$

$$\sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} (n\bar{X})^2 + \sum_{i=1}^{n} (X_i - \bar{X})^2$$

apply Theorem A and mgf to show that

$$\sum_{i=1}^{n} (X_i - \bar{X})^2 \sim \chi_{n-1}^2$$

t-distribution with $k \geq 1$ degrees of freedom

$$\frac{Z\sqrt{k}}{\sqrt{X}} \sim t_k\text{-distribution}$$
if $Z \sim N(0,1)$ and $X \sim \chi_k^2$ are independent
$$f(t) = \frac{\Gamma((k+1)/2)}{\sqrt{k\pi}\Gamma(k/2)} \left(1 + \frac{t^2}{k}\right)^{-(k+1)/2}$$

Random sample from
$$N(\mu, \sigma^2) \Rightarrow \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

Normal approximation for the t-distribution $t_k \approx N(0,1)$ for large k