SERIK SAGITOV, Chalmers Tekniska Högskola, February 9, 2005

2. Discrete random variables

$$\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$$

 $\mathbb{N} = \{1, 2, 3, \ldots\}$

2.1 Probability distribution

Def 1: discrete random variable

$$X:\Omega\to\{x_1,x_2,x_3,\ldots\}$$

is a number resulting from a random experiment finitely or countably many possible values

$$x_1 < x_2 < x_3 < \dots$$

Def 2: random count

$$X:\Omega\to\mathbb{N}_0$$

is a counting result in a random experiment

X = 0
X = 1
X=2
X = 3

Partition of Ω caused by a r.v. X

Def 3: probability distribution

The probability distribution of a r.v. X

is the set of probabilities for all possible values of XProbability mass function (pmf)

$$p_k = P(X = x_k), k \in \mathbb{N}, p_1 + p_2 + p_3 + \ldots = 1$$

Pmf for a random count

$$p_k = P(X = k), k \in \mathbb{N}_0, p_0 + p_1 + p_2 + \ldots = 1$$

Ex 1: coin-die experiment

first step: a fair coin is tossed: $P(H) = \frac{1}{2}$, $P(T) = \frac{1}{2}$ second step: a die is rolled once if H or twice if T

Discrete r.v. $D = \{ \text{total die score} \}$

$$p_0 = 0, p_1 = 6/72, p_2 = 7/72, \dots, p_6 = 11/72$$

 $p_7 = 6/72, p_8 = 5/72, \dots, p_{12} = 1/72$

X = 1	2	3	4	5	6	7
X = 2	3	4	5	6	7	8
X = 3	4	5	6	7	8	9
X=4	5	6	7	8	9	10
X = 5	6	7		9		
X = 6	7	8	9	10	11	12

Def 4: cumulative distribution function

$$F(k) = P(X \le k) = p_0 + p_1 + \ldots + p_k$$

increases from p_0 to 1

Properties of cdf

$$P(X > k) = 1 - F(k) = P(X \ge k + 1)$$

$$P(k_1 < X \le k_2) = F(k_2) - F(k_1)$$

$$p_k = F(k) - F(k - 1)$$

2.2 Mean value and standard deviation Def 5: mean, variance, st. deviation

Mean value μ of X or expectation E(X) is the probability mass center of X

$$\mu = \sum_{k=0}^{\infty} x_k p_k$$

$$\mu = p_1 + 2p_2 + 3p_3 + \dots \text{ for a random count}$$

Variance

$$\sigma^2 = \operatorname{Var}(X) = \operatorname{E}((X - \mu)^2)$$

is the mean squared deviation of X from its mean Standard deviation

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

measures the distribution spread in same units as X

Calculate the variance by
$$\sigma^2 = E(X^2) - \mu^2$$

Properties of Expectation and Variance

$$E(X + Y) = E(X) + E(Y)$$

$$E(c \cdot X) = c \cdot E(X), \operatorname{Var}(c \cdot X) = c^2 \cdot \operatorname{Var}(X)$$

$$Eg(X) = \sum_{k=0}^{\infty} g(x_k) p_k, E(X^i) = \sum_{k=0}^{\infty} (1 - F(k)) \text{ for a random count}$$

If
$$X$$
 and Y are independent, then $E(XY)=E(X)E(Y)$, $Var(X+Y)=Var(X)+Var(Y)$

Ex 2: students' grades

Compare three grade distributions:

araac	2				Total
Student A	25	25	25	25	100%
Student A Student B	40	10	10	40	100%
Student C	10	40	40	10	100%

X	$\mathrm{E}(X)$	$\mathrm{E}(X^2)$	$\operatorname{Var}(X)$	σ_X
Student A's grade	3.5	13.5	1.25	1.12
Student B's grade	3.5	14.1	1.85	1.36
Student C's grade	3.5	12.9	0.65	0.81

2.3 Discrete uniform distribution

Discrete uniform distr. with parameter N

$$X \sim U(N), N \in \mathbb{N}$$

 $p_k = \frac{1}{N}, k = 1, ..., N$
 $\mu = \frac{N+1}{2}, \sigma^2 = \frac{N^2-1}{12}$

Ex 3: systematic search

Open a lock by trying codes: 0000, 0001, 0002, ... number of trials required: $X \sim \text{U}(10000)$ $\mu = 5000.5 \text{ trials}$ $\sigma^2 = 8.3 \cdot 10^6 \text{ squared trials}$ $\sigma = 2886.8 \text{ trials}$

2.4 Binomial distribution

Binomial distribution with parameters n and p

$$X \sim \text{Bin}(n, p), n \in \mathbb{N}, 0
$$p_k = \binom{n}{k} p^k q^{n-k}, k = 0, 1, \dots, n, q = 1 - p$$

$$\mu = np$$

$$\sigma^2 = npq, \sigma = \sqrt{npq}$$$$

Def 6: Bernoulli trials

independently repeated experiment with two possible outcomes: success or failure Number of successes in n Bernoulli trials $X \sim \text{Bin}(n,p)$ p is the probability of success q=1-p is the probability of failure

If
$$X \sim \text{Bin}(n, p)$$
, then $X = I_1 + \ldots + I_n$
where I_1, \ldots, I_n are independent with $P(I_j = 1) = p$
 $P(I_j = 0) = q$, $E(I_j) = p$, $Var(I_j) = pq$

Ex 4: sampling with replacement

Consider a box with white and black balls:

N=30 the total number of balls $p=\frac{1}{3}$ the proportion of black balls in the box Randomly sample n=5 balls with replacement number of black balls in the sample $X \sim \text{Bin}(5,\frac{1}{3})$ $P(\text{BBBWW}) = p^3q^2 = 0.0165$ $P(X=3) = \binom{5}{3} \cdot p^3q^2 = 0.165$

Ex 5: Ehrenfest model of diffusion

Suppose n molecules of a gas are in a container divided into two equal parts by a permeable membrane $X_t = \text{number of molecules}$ in the left part at time t Transition probabilities

$$P(X_{t+1} = k - 1 | X_t = k) = k/n$$

$$P(X_{t+1} = k + 1 | X_t = k) = (n - k)/n$$
Equilibrium distribution $p_k = P(X_t = k)$

$$p_k = p_{k-1}(n - k + 1)/n + p_{k+1}(k + 1)/n$$

$$p_k = \binom{n}{k} 2^{-n}, k = 0, 1, ..., n$$

Equilibrium distribution is Bin(n, 1/2) each molecule chooses one of two parts independently at random

2.5 Hypergeometric distribution

Hypergeometric distribution with parameters N, n, p

$$X \sim \operatorname{Hg}(N, n, p)$$

$$n, N, (Np) \in \mathbb{N}, n \le N, 0$$

$$p_k = \frac{\binom{Np}{k}\binom{Nq}{n-k}}{\binom{N}{n}}, \max(n-Nq,0) \le k \le \min(n,Np)$$

$$\mu = np$$

$$\sigma^2 = npq(1 - \frac{n-1}{N-1})$$

Sampling without replacement

N = the total number of balls in the box

p = initial proportion of black balls in the box

X = number of black balls in the sample of size n

$$X = I_1 + \ldots + I_n$$
 with $P(I_j = 1) = p$, $P(I_j = 0) = q$

Reduced variance due to

negative dependence between I_1, \ldots, I_n

the more black balls are drawn

the less chances to see another black ball

The finite population correction $(1 - \frac{n-1}{N-1})$ is negligible when the sample fraction $\frac{n}{N}$ is small

Ex 6: sampling without replacement

5 balls sampled without replacement

from a box with 10 black and 20 white balls

 $\binom{30}{5}$ unordered samples are equally likely

Division rule:

$$P(3 \text{ black} + 2 \text{ white}) = \frac{\binom{10}{3}\binom{20}{2}}{\binom{30}{5}} = \frac{120 \cdot 190}{142506} = 0.16$$

Ex 7: aspirin teatment

placebo group: 11034 individuals, 189 heart attacks aspirin group: 11037 individuals, 104 heart attacks Statistical model

X = number of heart attacks in the placebo groupwithout aspirin effect $X \sim \text{Hg}(N, n, p)$

$$N = 22071, n = 293, p = \frac{11034}{22071} = 0.4999$$

$$N = 22071, n = 293, p = \frac{11034}{22071} = 0.4999$$

$$P(X = 189) = \frac{\binom{11034}{189}\binom{11037}{104}}{\binom{22071}{293}} = 0.00000015$$

Even the maximal probability is small

$$P(X = 146) = P(X = 147) = 0.0468$$

A different proportion

 $P(X \ge 189)$ would be more informative

2.6 Geometric distribution

Geometric distribution with parameter p

$$X \sim \text{Geom}(p), 0$$

$$p_k = pq^{k-1}, k \in \mathbb{N}, \operatorname{cdf} F(k) = 1 - q^k$$

$$\mu = \frac{1}{p}, \ \sigma^2 = \frac{q}{p^2}$$

Bernoulli trials with probability of success p

X = number of trials until the first success

Skewed (non-symmetric) pmf shape

$$p_{k+1} = p_k \cdot q$$

Lack of memory property for the geometric distribution

$$P(X > t + k | X > t) = \frac{P(X > t + k)}{P(X > t)} = \frac{q^{t+k}}{q^t} = P(X > k)$$

Ex 8: birthday problem

Number of, people asked until the same birthday as yours

$$X \sim \text{Geom}(1/365)$$

$$P(X > 253) = (\frac{364}{365})^{253} = 0.5$$

mean of X is 365, median of X is 253

Ex 9: random search

Try the lock codes at random

number of trials required
$$X \sim \text{Geom}(10^{-4})$$

$$\mu = 10000 \text{ trials}, \, \sigma \approx 10000$$

$$P(X > 10000) = (0.9999)^{10000} = 0.37 \approx e^{-1}$$

2.7 Negative binomial distribution

Negative binomial distribution with parameters r, p

$$X \sim \text{Nb}(r, p), r \in \mathbb{N}, 0$$

$$p_k = {k-1 \choose r-1} p^r (1-p)^{k-r}, k = r, r+1, r+2, \dots$$

$$\mu = \frac{r}{p}, \ \sigma^2 = \frac{rq}{p^2}$$

Bernoulli trials with probability of success p

X = number of trials until the r-th success

$$X = Y_1 + \ldots + Y_r$$
 with independent $Y_i \sim \text{Geom}(p)$

2.8 Poisson distribution

Poisson distribution with parameter λ

$$X \sim \text{Pois}(\lambda), \lambda > 0$$

$$p_k = \frac{\lambda^k}{k!} e^{-\lambda}, k \in \mathbb{N}_0$$

computational formula: $p_{k+1} = p_k \cdot \frac{\lambda}{k+1}$

$$\mu = \sigma^2 = \lambda$$

Poisson approximation of the Binomial distr

Poisson distribution is a distribution law of rare events small p and large n (jackpot wins, accidents)

$$Bin(n,p) \approx Pois(np) \text{ if } n \geq 100, p \leq 0.01$$

Exact meaning: for any fixed
$$k \in \mathbb{N}_0$$

$$\binom{n}{k} p^k (1-p)^{n-k} \sim \frac{n^k}{k!} p^k e^{-np} \to \frac{\lambda^k}{k!} e^{-\lambda}$$
as $np \to \lambda$

Poisson process of radioactive disintegrations

Radioactivity as a flow of Bernoulli trials

p = probability of a disintegration per a millisecond number of disintegrations during t hours

$$X_t \sim \text{Pois}(\lambda t)$$
, where $\lambda = 1440000p$

Poisson process $\{X_t\}$ counts disintegrations occurring at the rate λ disintegrations per hour Other examples of rates

3 asteroids per MY hit the Earth, MY = million years 5 replacements per amino acid per 1000 MY

Ex 10: cystic fybrosis

proportion of affected people p = 1/3000

 $X = \#\{\text{affected in a random sample of size } n = 6000\}$ Poisson approximation:

P(X = 3) =
$$\binom{6000}{3} (\frac{1}{3000})^3 (\frac{2999}{3000})^{5997} \approx \frac{2^3}{3!} e^{-2} = 0.180$$

P(X = 1) = $2e^{-2} = 0.271$
P(X \le 3) = $e^{-2} + 2e^{-2} + \frac{2^2}{2}e^{-2} + \frac{2^3}{6}e^{-2} = 0.857$