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6. Parameter estimation

Probability Theory

Parameters Data

Mathematical Statistics

6.1 Random sampling

Def 1: population distribution

Population is a set of elements {1,2, ..., N}
labeled by values {1, z9, ..., x y }, population size N
PD = population distribution of x-values
find PD: random sampling versus enumeration

Randomisation in sampling is a guard against
investigator’s biases even unconscious

Two kinds of sampling errors
systematic (accuracy) and random (precision)
Ex 1: sampling design errors
Systematic errors caused by sampling designs
selection bias: Roosevelt unpredicted victory in 1936
non-response bias: questionnaire vs interview
response bias: potentionally embarrassing information
Ex 2: color preference
histogram: students choice of green /yellow/red T-shirt

PD = (p1, p2, p3)



Def 2: iid sample
(X1, ..., X,) with observations X; being
Independent and Identically Distributed

6.2 Population parameters and estimates
Examples of population parameters

population mean p and standard deviation o

PD = (py,...,pr), population proportion p;

PD = U(0, 6), interval length 6

PD = Exp(A), population distribution rate A
Def 3: point estimate

a function = (X1, ..., X,) of the data

representing the unknown population parameter 6
Sampling distribution = distribution of 0

different samples give different values of 0

Point estimate 6 is a certain number after sampling

but 6 is a random variable before sampling

Sample mean and variance

Common estimates of y and o2
sample mean X = w

sample variance 5% = L v (X; — X)?

: : .S 2
Approximate sampling distribution X =~ N(u,%-)
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Sample proportion

PD = Bernoulli(p)
X =1 with probability p and X = 0 with ¢
sample count X7 + ...+ X, ~ Bin(n, p)
sample proportion p = X
approximate sampling distribution p ~ N(p, £%)

6.3 Unbiased estimates
Def 4: unbiased estimate

f is an unbiased estimate of 6, if E(6) = 6
no systematic error

Sample mean, variance, and proportion

all three are unbiased estimates E(X) = u, E(p) = p
E(S?) = o? explains the factor - instead of 1 in s*
Proof: assume p = 0

B(S%) = ;"E((X1 — X)?)

n—1

E(X2) — 2B(X,X) + E(X?)]

_ n [ 2 229 0_2}_ 9
= {0 na—l—n—a

6.4 Estimated standard error

Def 5: standard error

The standard error of @ is its standard deviation o
estimated standard error s; = an estimate of oy



Def 6: consistent estimate
a point estimate becoming accurate and precise
for sufficiently large sample size n

0 is consistent if E((§ — 0)%) — 0 as n — oo

Means quare error

B((6 — 0)2) = (E(9) — 6)%+ Var(0)

Sample mean and proportion

Two unbiased and consistent estimates:
o

X for p with oy =

7
. : -
p for p with o = p(np)
Estimated standard errors sy = %, Sp = ﬁ(ntf )

report point estimates in the form: Z(sy) or p(s;)

Ex 2: color preference
estimate p1, po, p3 and find their standard errors



Ex 3: cuckoos’ eggs
Length and breadth of 243 eggs in mm with frequencies

19 19.5]2020.5|21|21.5]22|22.5|23|23.5|24|24.5|25

1| 1 [ 7] 3 [29] 13 [54] 38 [47| 22 |21| 5 |2

14| 14.5[15|15.5|16 | 16.5| 17 | 17.5| 18| 18.5 | 19
1| 1 [5] 9 [73]51[80]15]7] 0 |1

length x = 22.41, s = 1.08, sy = 0.069
breadth z = 16.54, s = 0.66, sy = 0.042

6.5 Confidence intervals

Def 7: CI for a population parameter

CI for 0 of confidence level V% = an interval estimate
that covers 6 with frequency %
when computed for many independent samples

Approximate CI
approximate 100(1 — a)% Cl for pu: o+ 2,9 - sy
approximate 100(1 — «)% Cl for p:  p£ 2,9 - 55

Normal distribution table: ®(z,) = 1 — «

100(1 — ) | 68% | 80% | 90% | 95% | 99% | 99.9%
Za 0.47[0.84 [ 1.28 [ 1.64 | 2.33| 3.09
Za2 1.00 | 1.28 [ 1.64 | 1.96 | 2.58 | 3.30




Ex 3: cuckoos’ eggs
68% CI py = 22.41 +£0.069, pup = 16.54 £ 0.042
05% CI puy = 22.41 4 0.135, up = 16.54 & 0.083

99% CI puy = 22.41 4 0.178, up = 16.54 & 0.109

The higher is confidence level the wider is the CI
the larger is sample the narrower is the CI

Exact CI for the mean

Exact 100(1 — )% CILfor i Tt,9, 1 Sx
assuming that PD = N(u, 0%) with unknown p and o

Coefficient t,,/5 ,—1 comes from the table of
t-distribution with (n — 1) degrees of freedom

Exact CI for p is larger than approximate
the difference is greater for small samples

Compare ¢ 25 1 With 225 = 1.96

k=3 4 | 5 | 6 | 7 | 8| 9 |15 24120
3.18[2.782.57 [ 2.45 [ 2.37[2.31[2.26 | 2.13 | 2.06 | 1.98

Ex 4: comparison of two measurements

Two methods of measuring the fat content % of meat
are compared on 16 hotdogs
16 differences of measurements: £ = 0.53, s = 1.06

Exact and approximate 95% CI for the mean difference

exact CI = 0.53 £2.13 - 72 or (—0.03, 1.08)

approximate CI = 0.53 4 1.96 - % or (0.01, 1.05)



Ex 5: weight gain in rats
Four diets with different amount and source of protein

beef low 90 76 90 64 8 51 72 90 95 T8
beef high |73 102 118 104 81 107 100 87 117 111
cereal low |95 107 97 80 98 74 74 67 89 58
cereal high |98 74 56 111 95 88 82 77 86 92

Average weight gain and estimated s.e. z (sy)
beef low 79.2 (4.39), beef high 100 (4.79)

cereal low 83.9 (4.97), cereal high 85.9 (4.75)
build approximate and exact 99% Cls

6.6 Prediction interval
Assuming normal PD

predict a new observation X,,;1 from n earlier obs
Approximate 100(1 — @)% PLof X, 11: X £ 2,0 - s

exact 100(1 — )% Plis X &+ taja,n—1" \/@

Two variance components: Var(X, 1 — X) = 0 + %2
population variance plus the sampling error in X

Ex 6: fat content of hot dogs

Fat content (%) of n = 10 hot dogs: ordered sample
16.0, 17.0, 19.5. 20.9, 21.0, 21.3, 22.8. 25.2, 25.5. 29.8

Compare the exact 95% CI and exact 95% PI
CI for average fat content 21.9i2.26-j—% or 21.942.96
PI for the fat content of your hot dog 21.9 4 9.81
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6.7 Two methods of finding point estimates
Method of Moments Estimate
substitute population moments with sample moments

If E( ) f1 ((91, 02) and E( ) f2(01, 02)
solve = f1(601,05) and z2 = f5(61, 6)

a simple method, gives a first approximation for a MLE

Second sample moment 22 = %(SU% +...+22)

Maximum Likelihood Estimate
find a parameter value that best supports the data
Def 8: likelihood function

LO) = f(x1,...x,|0)
is the joint pmf/pdf of the data set (X1, ..., X,)
with fixed observations (x1, ..., z,) and variable 6

The MLE 6 is the value of # that maximizes L(0)

Large sample properties of MLE

If sample is iid, then L(0) = f(x1|0) ... f(x,|0)
MLE is asymptotically unbiased, consistent, and
asymptotically efficient = minimal standard error

PD MME = MLE | Corrected MLE
N(u, o) f=1 z

6% =15 (z; — z)? s*
Bin(1, p) p p
Pois(u) L=z T
Exp(A) A=1/z no formula




Ex 7: bus waiting time

Wiaiting times for a bus in minutes: 2, 7, 4, 15, 11
X ~ U(0,8), 6 = fixed time between two busses
E(X) =% MME: § = 2z = 15.6 min
L(0) = 1; f(2i]0) = 1 112,20y = (5)°1(o>15)
MLE 6 = 15 min

General MLE formula 0 = max(Ty, ..., T,)
E(0) = 150 )
corrected MLE = ”Tflﬁ = 18 min

Ex 8: capture/recapture method

For estimating the unknown population size N
step 1: 100 animals have been tagged and released
step 2: 50 animals are captured with 20 tagged

Sampling without replacement (dependent observations)
number of tagged animals X ~ Hg(NV, 50, %)

Likelihood function
(12000) (Ngol(](])
L(N) =P(X =20) = —(N)
50

L(N 20  N-—250
ﬁ =1—%5" N 5o larger than 1if N > 250

Maximum likelihood estimate

100 _ 20

N = 250 equates two proportions = 50



Ex 9: randomized response method
prison population size N = 500 inmates
with Np heroin users, Nq non-users
Bill rolls a die in private and responds to the statement
“I use heroin” with probability % or
“I do not use heroin” with probability %
Observed number of “yes” answers Y = 125
Y =Y,+Y,, where Y, ~ Bin(Np, %), Y, ~ Bin(Ng, %)
Observed proportion of “yes” answers m = % = 0.25

E(r) = 22 Var(m) = L. 3.1 5 =1L

Method of moment estimate

solve the equation HT@ = 7 to find p = 0.125

o5 =9+ 2 =0.025, 95% CI for p is 0.125 £ 0.049
Posterior probabilities if p = 0.125
P(Bill uses heroin | Bill said “yes”)=0.417

P(Bill uses heroin | Bill said “no”)=0.028
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