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1. Probability rulesrandom experiment ! random event ! probability1.1 Random eventsInformally: a random even A either ours or notin a random experiment 
Def 1: sample spae
 is the set of all possible outomes in a randomexperiment (�nite or in�nite, disrete or ontinuous)Def 2: random eventA is a subset of 
, A � 
�� ��A 
 Venn diagram
Ex 2: birthday problemExperiment: 36 students' birthdays
 = f(i1; : : : ; i36)g1�i1�365;:::;1�i36�365eventA= fat least two of 36 have a ommon birthdaygDef 3: intersetion and union of two eventsA \B = fA and Bg, A [B = fA or B or bothg�� ��A '& $%B �� ��'& $%������������������A \B �� ��'& $%��������������������������������������������������� �������������� ��� ��� ��� ��� ��� ��� ���������A [B2



Def 4: mutually exlusive (disjoint) eventsA and B are mutually exlusive, if A \B = ;omplementary event to A: �A = fA does not ourg
�� ��A '&$%B A �A

1.2 ProbabilityInformally: probability P(A) of the event A is anumber between 0 and 1 saying how likely A is to ourP(A) = 1 means A is ertainP(A) = 0 means A is impossibleprobability = population proportionDef 5: probability measureP(�) satis�es three axioms1. P(
) = 12. if A 2 
, then P(A) � 03. if A and B are disjoint, P(A [B) = P(A) + P(B)Addition rule of probabilityP(A [B) = P(A) + P(B) { P(A \B)P(A) + P( �A) = 1, P( �A) = 1� P(A)P(A [B [ C) = P(A) + P(B) + P(C){ P(A\B) { P(A\C) { P(B \C) + P(A\B \C)3



1.3 Division ruleDivision rule: if all outomes are equally likely, thenP(A) = #(A)#(
) = number of favorable outomestotal number of outomesEx 3: two die experimentTwo die are rolled: #(
) = 6� 6 = 36P(the sum of points on two die equals 5) = 436 = 19Ex 4: sibling samplingFive families with two hildren:three with boy and girl, two with boy and boyTwo sampling experimentsexperiment 1: pik a family at randomexperiment 2: pik a boy at random, onsider his family�nd P(A), A = fthe hosen family has two boysg1.4 Basi ombinatorisHow to ount the numbers of outomes #(
)in an r-step experiment givenNi = #(outomes in the i-th step), tree of outomesMultipliation priniple: #(
) = N1 �N2 � : : :�NrEx 5: sampling with replaementRandom experiment:draw n = 3 balls with replaement from a boxontaining N = 4 balls labelled f1, 2, 3, 4g#(
) = 4� 4� 4 = 64 4



Def 6: permutation and ombinationpermutation = the ordered set of labels in the sampleombination = unordered set of labels in the sampleNumber of permutations of N distint objets taken nat a time: N � (N � 1)� : : :� (N � n + 1) = N !(N�n)!The number of ombinations of N distint objetstaken n at a time equals �Nn� = N !n!(N�n)!Numbers �nk� form Pasal's triangle and are often alledbinomial oeÆients due to the expansion(a + b)n = an + �n1�an�1b + : : : + � nn�1�abn�1 + bnEx 6: sampling without replaementFour objets are taken 3 at a timenumber of permutations = 4� 3� 2 = 24number of ombinations = 243�2�1 = 4123 132 213 231 312 321 124 142 214 241 412 421134 143 314 341 413 431 234 243 324 342 423 432Ex 2: birthday problemEvent A = fat least two of 36 have a ommon birthdayg#(
) = 36536 = 1:748 � 1092#( �A) = 365 � 364 � � � 330 = 2:93 � 1091P( �A) = 0:17, P(A) = 0:835



Def 7: multinomial oeÆientNumber of possible alloations in the random experiment:alloate n distint objets into r distint boxesbox sizes n1; : : : ; nrtotal size of the boxes n1 + : : : + nr = nMultinomial oeÆient � nn1;n2;:::;nr� = n!n1!n2!:::nr!In partiular binomial oeÆient �nk� = � nk;n�k�(a1 + : : : + ar)n = P � nn1;n2;:::;nr�an11 : : : anrrsum over n1; n2; : : : ; nr satisfying n1 + : : : + nr = nEx 7: birthmonthsExperiment: birthmonths of 36 studentsevent A = f3 in Jan, 3 in Feb, ..., 3 in Deg#(
) = 1236 = 7:088 � 1038 = P � 36n1;n2;:::;n12�#(A) = � 363;3;3;3;3;3;3;3;3;3;3;3� = 1:7 � 1032P(A) = 2:4 � 10�71.5 Conditional probabilityDef 8: joint probability of two eventsP(A \B)Def 9: onditional probabilityP(AjB) = P(A\B)P(B)of a random event A given that event B has ourred6



�� ��A BA \B P(AjB) = P(A\B)P(B)P(BjA) = P(A\B)P(A)
Multipliation rule of probabilityP(A \B) = P(AjB)P(B)P(A \B \ C)=P(AjB \ C)P(BjC)P (C)Ex 2: birthday problemEvent A = fat least two of 36 have a ommon birthdayg�A = A1 \ A2 \ : : : \ A36P( �A) = 365365 � 364365 � � � 330365 = 0:17P(A) = 0:83Def 10: partition fB1; B2; B3g of 
pairwise mutually exlusive events, B1 [B2 [B3 = 
The Law of Total Probability (LTP)P(A) = P(AjB)P(B) + P(Aj �B)P( �B)�� ��AB1 B2B3 P(A) = P(AjB1)P(B1)+P(AjB2)P(B2) + P(AjB3)P(B3)
Given a partition fB1; B2; B3g of 
P(A)=P(AjB1)P(B1)+P(AjB2)P(B2)+P(AjB3)P(B3)7



Ex 8: oin-die experiment�rst step: a fair oin is tossed: P(H) = 12, P(T ) = 12seond step: a die is rolled one if H or twie if TTree of outomes: 6+36 = 42 not equally likely outomesD = ftotal die soreg, random event fD = 5gDivision rule:P(D = 5jH) = 16, P(D = 5jT ) = 436Multipliation rule: joint probabilitiesP(D = 5; H) = 16 � 12 = 112P(D = 5; T ) = 19 � 12 = 118LTPP(D = 5) = 112 + 118 = 536 = 0:139Ex 9: three door puzzleThree doors with invisible numbers 1, 2, 3a ar behind door 1, nothing behind doors 2 and 3Step 1. You point randomly at a door number X1P(X1 = 1) = P(X1 = 2) = P(X1 = 3) = 1/3Step 2. A door number X2 6= X1 is opened for youthe is no ar behind itStep 3. You are free to hoose between door X1and the other unopened door X3CompairP(X1 = 1jX2 = 2 [X2 = 3) andP(X3 = 1jX2 = 2 [X2 = 3)8



1.6 Bayes' formulaP(BjA) = P(AjB)P(B)P(A)For any partition fB1; : : : ; Bkg of the sample spae 
P(BijA) = P(AjBi)P(Bi)Pkj=1P(AjBj)P(Bj)Def 11: prior and posterior probabilitiesP(B) the probability of B before a measurementP(BjA) the probability of B after A is observed�� ��A1B1 B2B3 �� ��A2B1 B2B3Events A1 and A2 alloate di�erentlythe posterior probabilities for fB1; B2; B3gEx 8: oin-die experimentPrior probabilities for the oin experimentP(H) = 12, P(T ) = 12Posterior probabilitiesP(HjD = 5) = 1=125=36 = 3=5P(T jD = 5) = 1=185=36 = 2=5
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1.7 IndependeneDef 12: independent eventsEvents A and B are alled independent if knowing thatone event has oured gives no information about theother event: P(AjB) = P(A) and P(BjA) = P(B)A and B are independent if P(A \B) = P(A)P(B)Def 13: mutually independent eventsA, B, C are mutually independent if they are pairwiseindependent and P(A \B \ C) = P(A)P(B)P(C)Ex 2: birthday problemExperiment: ask n people for their birthdayevent Bn = fall n birthdays di�erent from yoursgIndependent eventsAi = fperson number i has a di�erent birthdaygwith equal probabilities P(Ai) = 364=365P(Bn) = P(A1 \ : : : \ An) = (364=365)nYou must ask n = 253 peopleto have 0.5 probability of the same birthdayEx 10: three oinsToss two fair oins, then for the third oinhoose H if two heads or two tailshoose T if one heads one tailsThe three oin outomes are pairwise independentdespite mutual dependene: P(T1 \ T2 \ T3) = 010


