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1 Introduction

In financial mathematics, the modelling of financial assets using stochastic
processes is a fundamental issue. Let us denote by S(¢) the price of for
example a stock at time ¢ (in this text, ¢ is measured in days). Over the
years several models have been proposed for S(¢). The most classical and
widely used model is the so called Bachelier-Samuelson model, which is given
by

S(t) = S(0)ert+oW () (1)

where S(0) is the price at time 0, 4 € R, 0 € Ry, and W () is a standard
Wiener process, also known as Brownian motion. The parameter p is called
drift and o? is called volatility.

Exercise 1 Let t > s. Show that the distribution of log (S(t)/S(s)) is
N(u(t = s), 0%t — 3)).

Exercise 2 Calculate E{S(¢)}.

Exercise 3 Why isit a better idea to consider the model S(t) = S(0)e#t+oW®
than the simpler model S(t) = ut + oW (t)?

The reason the Bachelier-Samuelson model is so popular is that the theory
for the Wiener process, which is the most important of all Lévy processes, is
very well developed. From the Bachelier-Samuelson model arises many nice
formulae in the theory of option pricing, see for example [4]. However, it is
known through many empirical studies that the this model is not a realistic
model. In fact, it has many unwanted properties some of which are listed
below.

1. The distribution of the increments of log (S(¢)) has very light tails.

2. The increments of log (S(t)) over disjoint time intervals are indepen-
dent.

3. The increments of log (S(¢)) have a symmetric distribution.

The first of these means that the probability of a big change in the price
of the stock overnight is very small. In reality, big changes do happen not
very seldom. The second disadvantage means that the change in the price
for a day does not depend on the change in the price the day before. In
reality however, it is known that a big change is often followed by another



big change. The third disadvantage will be visualized later.

To get rid of some (but not all) of these disadvantages, it is possible to
consider a more general model, namely

S(t) = S(0)eX® (2)

where X (t) is a Lévy process (note that the Bachelier-Samuelson model is
included in this class of models).

Exercise 4 Which of the unwanted properties for a model of the price of
a stock cannot be avoided by this model? Motivate your answer!

In the last few years, the so called Normal Inverse Gaussian (NIG) process
has been the subject of many studies in empirical finance. It has turned out
that this process is a good choice for the process X (t) above. Before defining
the NIG process, we define the Normal Inverse Gaussian distribution.

Definition 1 (One-dimensional NIG distribution) A one-
dimensional NIG distribution has the following density function

ad Ki(a\/6% + (z — v)?
a0, 8,6,0) = 2 exp (5T =+ (o — vy VT H 0= 1))
7r 2+ (z —v)?
for x € R, wherev € R, 6 >0, 0 < |B] < «, and K is the modified Bessel
function of the third kind.

Here, v is a location parameter, 3 a skewness parameter (affects the shape
of the density), and « and 0 are scale parameters. A NIG process is a Lévy
process {X (t)}+>0 such that the distribution of X (1) is given by the above
defined NIG-distribution. It is not difficult to show that if {X(¢)}i>o is a
NIG process, then the density of X (¢) is given by

fX(t)(x) :fNIG(x;aaﬁaétayt)' (3)

From now on we say that X ~ NIG(q, 3,6,v) if X has a NIG distribution
with parameters «, 5, 0 and v.

Exercise 5 If {X(¢)}i>0 is a NIG process, show that if ¢ > s then X (t) —
X(S) ~ NIG(O,/, /Ba 5(t o S)a ,Lt(t - 8))



2 Estimation of model parameters

Suppose we are given a time series of for example stock prices for n days
which we denote by {z;}?_,. We define the series of logreturns by {r;}I=} =

n—1

{log (w;y1/2:)}i=y. Modelling the stockprice according to (1) means that
we consider {r;}?_' as n — 1 independent observations from a N(u,o?)-
distribution according to the exercise. If we instead use the model (2) then
we consider {r;}?_! as n independent observations from a NIG(«, 3,6, j1)-
distribution. We now want to estimate the parameters in the models, and
to do this we will use the so called mazimum likelihood method, which you

might remember from you first statistics course.

2.1 Maximum likelihood method

If we are given n independent observations {z;}} ; of a random variable
X with density function fx(z;61,...,0,) where 6, ..., 0 are parameters, the
(observed) mazimum likelihood estimate of 61, ..., 0y is given by

n
(01, ...,0r) = argmax,, o fo(:rz-; 61, ..., 0) (4)
i=1
The product in (4) is called the likelihood function, and the maximum like-
lihood estimate is simply those parameter values maximizing the likelihood
function. Quite often it is more convenient to maximize the natural log-
arithm of the likelihood function, which gives the same estimate since the
natural logarithm is an increasing monotone function. When maximizing
the likelihood function, we (in some sense) choose the parameters making
the observations most likely (this description is only completely correct in
the discrete case, (why?)). In the case of estimating the parameters p and o
in the normal distribution, the maximum likelihood estimates are explicitly
known:

ji = 5)

52 = Z?ﬂ(ﬂ”i — 1) . (6)

In general, one does not have such explicit formulas, for example in the NIG
case we do not. In this case, we numerically have to optimize the likelihood
function (4) with respect to «, (3, §, v numerically using for example the
softwares MatLab or Mathematica.



2.2 Computer task

In the internet directory http://www.math.chalmers.se/~johant/nigfiles/
you can find three files for this task. The file ericsson.txt contains returns
for the Ericsson stock between September 2000 and September 2002 (you
have to take the log of the data to get the logreturns). Now fit the model
parameters u and o2 in the Bachelier-Samuelson model to the data. Also
fit the logreturns to a NIG(«, 3,0, v)-distribution. To do this, one can use
the Matlab routine fminsearch or the Mathematica routine FindMinimum.
These routines are so called optimization routines, using different algorithms
trying to find where a function has its smallest value. Such algorithms needs
to have starting values specified, that is, they need to know where to start
looking for the smallest value. In this case, one has to give some more or less
good guess about what the NIG-parameters might be. This can be done for
example by looking in some article where NIG-parameters have been esti-
mated for some other stock price. If unfamiliar with optimization in general,
the optimization routines might not be so easy to handle. Since this project
is aimed at understanding the modelling of asset prices by stochastic pro-
cesses, rather than Matlab or Mathematica programming, you can use the
Matlab files 1iknig.m and skattning.m in the directory above to do the
optimization. To understand how they work, you need to read in the Matlab
manual about fminsearch.

Using the estimated parameters, now plot and compare the normal density
and the NIG-density.

3 Testing the fit of the models

So now we have estimated model parameters in two different models for the
Ericsson stock. However, we do not know how good our models fit to the data.
The so called “goodness of fit” can be examined in different ways. One can
calculate different test statistics or look at graphs. Here we choose to do the
latter, since it can be used without introducing too much new theory. What
we will do is to compare the so called empirical distribution function with
the estimated distribution functions. The estimated distribution functions
are

FNIG(x;daBaSaﬁ):/ fNIG(y;daBagal))dy (7)

and



T

FNormal (.CE; laa 5-2) = / fNormal (y; laa 6-2) dy (8)
—0o0
where &, B , b} , , 62 and [i are our estimated parameters. Given observations
{z;}"_, from some random variable X the (observed) empirical distribution
function is defined in the following way:
Fomp(x) ={zi: 2, <z,1<i<n}/n 9)
where [{...}| denotes the number of elements of the set {...}.

In other words, the empirical distribution function at z is the percentage
of observations smaller than or equal to x. Plot the empirical distribution
function for the logreturns of the Ericsson data set and compare with the
estimated distribution functions in the normal and the NIG-case. Which one
of the estimated distribution functions looks most like the empirical one?

4 Simulation

Unfortunately, simulation of a NIG-process is beyond the scope of this course.
But we can easily simulate S(¢) in the Bachelier-Samuelson case, since a
Wiener process is easily simulated. For hints how to do this, see chapter 5 in
[3]. Simulate some trajectories of S(t) with the estimated y and o?. What
happens if one varies u and o7 Good luck!
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