IMAGE ANALYSIS AND SPATIAL STATISTICS
Computer Exercise 1 : Getting Started

Mats Kvarnstrom
Department of Mathematical Statistics
Chalmers University of Technology

January 2005

1 Introduction

This computer exercise is intended to be an introduction to image processing
using Matlab and the Image Processing Toolbox (IPT), covering the basic
procedures like loading and saving images and how to display them. Also
included are how images are represented and the different so called Image
Types used in Matlab. In short, the basic things needed to get started with
Matlab as image analysis tool. Some basic Matlab experience is assumed,
but not much.

In Section 3 a very short introduction to the UNIX program XV is given.
This program will be useful when converting an image from an image format
not supported by Matlab, and the other way around.

The description is written in a ‘hands-on-keyboard-and-try’-kind of way,
by which I mean that you are supposed to investigate by your own with this
document as a guide. You are encouraged to use the Matlab command help
as soon as a new command or function is introduced. As we get in trouble,
T'll try to explain what happened and why we got in trouble and how to solve
it. For a thorough, but less trouble-oriented exposition of Matlab’s Image
Processing Toolbox you are referred to the IPT User’s Guide by Mathwork,
available in HTML format by writing doc in a Matlab command window.

Everything written in Courier refers to a Matlab variable, command or
function and everything with a >> in front of it, is for you to type in the
Matlab command window.

In Section 4 a list of the Matlab commands and functions used in this
document is supplemented. The command you need to know about right
away is the help command mentioned above.



1.1 Images
The images used in this laboration are
e rice.png: A standard image in Matlab.

e fumitory-007.jpg: A color photograph of a fumitory plant (‘jordrok’
in Swedish) standing out against a brown background. Can be down-
loaded from the course homepage.

1.2 Start Matlab

To open a Matlab command window on a UNIX station, type matlab in an
X-term window (or equivalent).

2 Basic image operations in Matlab

This section is built up as an exercise. So, hands on keyboard and follow
the instructions. As you always should do whenever you encounter a new
Matlab command or function, type help followed by the name, to get full
syntax information and a short description.

2.1 Loading and displaying of images in Matlab

In order to load an image to Matlab from your present directory, the com-
mand imread is used. To get the habit, start by writing

>>help imread

but don’t read the entire description right away. The details and all options
may be needed for later work, but not right now. Write

>>I=imread(’rice.png’);

to read the TIFF-file rice.tif and store it in the variable I. This is the
working variable and you don’t have to bother about the actual filename
anymore (unless you have to reload it again for some reason).

Now you probably want to take a look at it. Type

>>figure(1)
>>imshow (I)

and Matlab will first open an empty figure (window) and then display the
image stored in I in it.



fs

7

<2/
»
’
/f”

1
\

\

2ty
"4 0.

f i
77 Js

' 4
g

!

s
;

Figure 1: The image rice

2.1.1 Histogram

Also, look at the histogram to have a feeling for the distribution of the pixel
values in the image.

>>figure(2)
>>imhist (I)

The histogram is of great importance when we for example threshold. See
Section 2.3.2 for an example of this operation.

2.2 Representation of images

Now that we have an image variable we want to know how it is represented
(i.e. how it is stored) by Matlab, and what kind of operations we are per-
mitted to do on it. To begin this exploration, type

>>whos



and you'll get a list of all variables defined in this Matlab session ! , including

our image variable I. Here you can see for example that the size of the image
I is 256 x 256 pixels and that the class is uint8 array. This means that it has
the data structure of an array with each element being stored as an unsigned
integer of size 8-bit. The last thing is important. By default, most data in
Matlab are stored as arrays of with elements stored in double precision (64-
bit) as floating-point numbers called double, and therefore most of Matlab’s
functions are only defined on this class of numbers. Images however, are
usually stored in arrays of 8-bit or 16-bit unsigned integers called uint8 and
uint16, in order to reduce memory consumption. So, problems can arise
when one needs to use the majority of the standard functions in Matlab
(several functions in IPT support uint8 and uint16, though).

Let’s say that you want a brightened version of the image. A way to
do this is to convert the image variable to double and then multiplicate by,
say, a factor 1.5:

>>Ib=1.5%double(I);
Now try to display Ib in figure number 2:

>>figure(2)
>>imshow (Ib)

The displayed image is all white. What is the problem? To answer that
question thoroughly, we have to know pretty much about the different so
called Image Types and how Matlab handles images in general.

2.3 Image Types

The problem in the last section is due to the fact that the IPT handles four
different types of images

e Indexed Images
e Intensity Images
e Binary Images
¢ RGB Images

The most common image types are the Indexed and the Intensity type.
Loosely speaking, one could say that the two types in the middle are special
cases of the first one, whereas the RGB Image type is a generalization of the
Intensity Image.

'In later versions of Matlab, this list of all variables are shown in the workspace window
of the desktop.



2.3.1 Indexed and Intensity Images

The following two paragraphs might be a bit hard to digest. Don’t bother
to get all the technical details at your first reading. The important stuff is
in the practical consequences it implies.

An Indexed Image is represented by a data matrix X with element values
in the range {1,...,m} corresponding to indices, and a colormap map. The
colormap is an m-by-3 array of class double containing values in the range
[0,1], such that each row of map specifies the red, green, and blue (RGB)
components of a color. The elements in the data matrix can be either of
class double, uint8, or uint16. The reason for the name ‘Indexed’ is that
each element in the data matrix (usually simply referred to as ‘the image’)
specifies the color of the corresponding pixel by referring to the indez (row)
of the colormap map.

The Intensity Image consists solely of a data matrix X, the elements
of which can be of class double, uint8, or uint16. Here, the elements
represents intensities, usually gray levels, where 0 normally represents black
and 1, 255, and 65535, respectively, represents white, according to class.
The ‘usually gray levels’ in the last sentence is due to the fact that Matlab
uses a colormap to display the image here as well (!). The standard colormap
of the Intensity Image corresponds to the 256 gray levels, though.

The practical consequence of this is that the colormap in use always
specifies which colors we use and that we only have to bother about these
two different types when the data matrix is of class double (because of
the different ranges of the two image types). Usually, with rare exceptions,
images with elements of class double are interpreted as Intensity Images and
therefore the gray scale ‘lies in the range’ [0, 1] (with 0 and 1 representing
black and white, respectively, and everything in between as different shades
of gray).

Now we have reach a point where we can fix our problem when trying to
display the brightened image Ib. When we use double to convert an image
from uint8 to double, Matlab interprets the new image as an Intensity
Image and consequently, by the preceding three paragraphs, 0 represents
black and 1 white. If you look at a slice of the data matrix Ib (don’t use
semi-colon now!):

>>Ib(1:10,1:10)

you see that the elements are all greater than 1. To see what the smallest
element of Ib is, use min two times (first along the columns and then along
the rows):

>>min(min(Ib))

No wonder the image turned up all white; all elements are larger than 1!?

2You could also have used imhist to realize these facts immediately.



Therefore we need to normalize:

>>Ib2=(1.5*double(I))/255;
>>figure(2)
>>imshow (Ib2)

An alternative approach is to use the function im2double, which automati-
cally normalizes to the range [0, 1], i.e. to an Intensity image of class double.

>>Ib3=1.5%im2double(I);
>>imshow (Ib3)

Notice that the images Ib2 and Ib3 consists of elements of class double in
the range [0, 1.5]. If you like to have the original {0,...,255} integer range
of the original image as a reference scale. Then imshow has an optional
parameter specifying the data range you’d like to represent the gray scale
with (maybe you already have noticed this when using help imshow!)

>>imshow (Ib, [0,255])

This parameter is very useful and will probably come to use in your later
work in this course.

2.3.2 Binary Images

A Binary Image can be said to be an Indexed Image with the exception
that we only have two different colors available corresponding to on and off
(white and black, respectively, if we use a gray scale colormap). A binary
image can be either of class double or uint8. Create a Binary Image from
I by thresholding

>>Ibin=I>150;
>>imshow(Ibin)

Now, the pixels in I larger than 150 is set to 1 and the pixels below to
0, and as you probably have figured out once you’d displayed Ibin, this
operation might come to use. It is one of the most primitive so called image
segmentation method.

2.3.3 Colormap manipulation

When loading an image with imread, there is a optional output variable
called map (see help imread). This is the variable for the colormap, men-
tioned above. This is returned empty however, if a colormap wasn’t saved
together with the image (data matrix), i.e. if the image is not an Indexed
image. Even if this is the case, Matlab uses a colormap to display all of the
three types above. Write



>>colormap

to see the colormap which is currently used. It should be a gray scale (there
should be an equal amount of each of the three colors at each row). Notice
also that it is of size 256-by-3.

If we want to use another colormap, we first create an array of appropiate
size with elements of class double in the range [0,1]. Then we use the
function colormap (it is both a function and a variable) to tell Matlab to
use this new array as colormap ? . It is quite time-consuming to specify e.g.
256 colors with there RGB components, though. Fortunately Matlab has
some built-in colormaps. One of them is called jet

>>map=jet (256) ;
>>colormap (map) ;

where the argument to jet of course specifies the number of rows. If you
haven’t used help for this function, do it now, and you’ll see the other
colormaps among the related functions at the bottom of the description.
Try some of the other maps together with the images I, Ib and Ibin! Also:
what happens if you specify to few colors. Except from using gray, you can
construct a gray scale map by (of course; use help if you don’t know how
linspace works)

>>map_gray=[linspace(0,1,256);linspace(0,1,256);linspace(0,1,256)]°;
>>colormap (map_gray)

Notice the transponate on map _gray! As an experiment try to change the
range argument in linspace from (0,1) to e.g. (1,0) or (.5,1) and see
what happens.

When you change from the original colormap to an artificial one, it is
called pseudocoloring and it is not just something you use for your homepage
or something like that. It can in fact help you to see things which might
not be visible if we used the ‘real’ colors, e.g. small subtle changes in the
texture. Try for example a random colormap by writing

>>map_rnd=rand (256, 3) ;
>>colormap (map_rnd) ;

where rand creates uniformly distributed random numbers between [0, 1].

2.3.4 RGB Images

An RGB image is stored in Matlab as an 3-dimensional array of class double,
uint8, or uint16, where the first two dimensions specifies the pixel location,

3If you have several figures open, he sure to first activate the figure where you want to
change the colormap. Either click on the figure window or use the function figure.



Figure 2: The RGB image fumitory-007. jpg

whereas the third dimension defines the red, green, and blue component of
the pixel. (Informally speaking it consists of three Intensity images, one for
each color, stored in a single array.) This means that an RGB image doesn’t
use a colormap, the color is handled by the data matrix. To demonstrate an
image of this kind, load the image fumitory-007.jpg. (No, it has nothing
to do with James Bond...)

>>Ifum=imread(’fumitory-007.jpg’) ;
>>imshow (Ifum)

Notice that the colors of the displayed image is independent of the colormap
used.

Extraction of the three ‘color planes’ to separate images can be done
with Matlab’s standard matrix handling.

>>IfumR=Ifum(:,:,1);
>>IfumG=Ifum(:,:,2);
>>IfumB=Ifum(:,:,3);

Display these three images using imshow. Notice that they can be thought of
as three Intensity images, each specifying the intensity of the corresponding



color. You might want to change colormap to gray scale if you haven’t done
that already. It may also be of interest to use whos to see the representation
(and the memory usage!) of these ‘slices’.

If we are looking for the green standing out against the dark background
we display the green component and normalize with the sum of the intensi-
ties at each pixel location. Notice that we have to convert to double first.
Create such an variable first and then display it:

>>Igreen=double (IfumG) . /sum(double (Ifum),3);
>>imshow (Igreen)

where sum(X,3) means that the summation is carried out over the third
dimension of the array X (the three different color planes in our case) and
the dot before the / means, as usual in Matlab, that the division should be
carried out component-wise.

2.4 Saving images

To save the image Igreen as a TIFF-file (we’ll need it in forthcoming Com-
puter Exercises), type

>>imwrite(Igreen,’fum_green.tif’,’tif’);

In order to save memory, the image (which was of class double) is saved in
8-bit format uint8. To illustrate this load the previously created image file
to the variable Igreen2:

>>Igreen2=imread (’fum_green.tif’);

and use whos to see the representation.

It should be noted that it is also possible to save the actual image vari-
able, instead of saving it in an image file. This can be done with the standard
Matlab command save. You should notice however that this means that you
can only open the saved image (variable) in Matlab.

3 Converting images using the XV program

Sometimes you stumble across images that are not in one of the formats
which Matlab can handle (see help imread for a list of the formats sup-
ported by Matlab). If that is the case, then you have to convert the image
to a Matlab-supported format before you can do anything else. A standard
image handling program on UNIX capable of this (and more) is XV.

Start XV by typing xv in an X-term window and a window like the one
in Figure 3 will pop up. Right click on the XV-window to open the control
window.



UNREGISTERE atioh info.

Figure 3: The XV-program can be used e.g. for convertion of images in
formats not supported by Matlab.

3.1 Example of a convertion

To be concrete, let’s say we need to convert the previously saved TIFF-image
fum green.tif to JPEG-format.

1. Click on ‘Load’ and browse through your files. Double-click on
fum green.tif and your normalized green-component image will be
loaded and displayed.

2. Click on ‘Save’.

3. Choose format to ‘JPEG’. Notice that the filename at the bottom
of the window changes file extension suffix to .jpg. Make sure that
‘Colors:’ is set to ’Greyscale’ and click on ‘OK’.

4. Now another (format depending) window pops up. Here you can make
adjustments according to the format you’re saving to. For JPEG the
options are different levels of smoothing and quality (compression).
Set for example Quality to 75% and Smoothing to 0% and click ‘OK’.

4 Useful Matlab commands and functions

e clear: This command clears all variables currently in Matlab’s work-
ing memory. Can also be used to clear specific variables. This may be
useful especially when working with images.

e colormap: This is (usually) both a variable and a function. As a func-
tion it specifies which colormap to be used when handling indexed
images. When using imread without a map output variable, the col-
ormap is stored in the implicit (not visible) variable colormap.

10



dir: Lists the files in the present directory. Faster than the Unix
command 1s.

double: Converts an element to class double.
gray: This function creates a (linear) gray-scale color map.

help: This is probably the most frequently used command when using
Matlab. It is used not only when you need a description for a func-
tion but, more often, when you need to check the settings for the in
and out parameters and variables, at function calls. It is also used
when exploring toolboxes. When you, for example, type help images
you get a complete list of all the functions and demos in the image
processing toolbox.

im2double: Converts an image to class double.
imhist: Displays the histogram of the image.
imread: Reads an image file to a Matlab variable.

imshow: This function is used to display an image, which is one of
types Indexed, Intensity, Binary and RGB image. For the first three
types the colors are specified by the colormap used. A closely related
function is image (standard Matlab).

imwrite: Writes a Matlab image variable to an image file.

min: Finds the minimum element value and (optional) the index of
this, along one dimension at a time, of an array. So, for an image use
this twice, first along the columns and then along the rows.

sum: Sums the elements of an array, along one dimension at a time.
See also min.

whos: A command used to list all the variable names currently used
by Matlab, together with information such as size and class.

11



