
Statisti
al Image AnalysisComputer Exer
ise 4: Statisti
al Image ModelsMats Kvarnstr�omDepartment of Mathemati
al Statisti
sChalmers University of Te
hnologyJanuary 20051 Introdu
tionIn this exer
ise we are going to investigate some statisti
al image models.This will be done by simulating. First we deal with independent randompro
esses whi
h are usually used as a model of the noise in an image. Then,we turn our attention to dependen
y between the pixel values using the
on
ept of Markov Random Fields. To illustrate this, we use the Isingmodel.2 White noiseIf the pixel values are random and un
orrelated they are said to be whitenoise. The (marginal) distribution of ea
h pixel value may be of any kind;as long as the values are un
orrelated, it is white noise.In this se
tion we are going to simulate pro
esses with independent pixelvalues (whi
h impli
ate that they are un
orrelated, and thereby white noise).These kind of images are the easiest to simulate, simply be
ause you simulateea
h pixel value in the same way, regardless of the values of the other pixels.Matlab has two useful 
ommands for generating random variables. The �rstone, rand, generates uniformly distributed random variables between zeroand one, and the se
ond randn generates a normally (Gaussian) distributedrandom variable with expe
tation zero and varian
e 1. (It should be men-tioned that Statisti
s Toolbox has 
ommands for all 
ommon distributions.Type help stats for a list of the 
ommands and fun
tions in this toolbox.)2.1 Simulation of Gaussian white noiseTo simulate an image of size 64x64 
onsisting of white Gaussian noise (notwhat we usually would 
all an image, though) with mean � = :5 and stan-dard deviation � = :2, write: 1



Figure 1: Multipli
ative white Gaussian noise with � = 0:3 
orrupting the`ri
e.png' image.>>Ngauss=.2*randn(64) + .5;Noti
e that randn(64) produ
es a square matrix of size 64x64 of randomN(0,1)-distributed variables. If it is 
ru
ial to have pixel values only in theinterval [0; 1℄, you 
an for example use find to trun
ate:>>Ngauss(find(Ngauss>1))=1;Do analogously to trun
ate the pixel values less than zero.The noise image itself is not really interesting. What we interested in,is when noise degrade or 
orrupt a real image, and how (and if) an imagepro
essing algorithm works even if we have a noisy image.Load the image `ri
e.png' and 
orrupt the image by adding or mul-tipli
ate ea
h pixel in the image by a Gaussian random variable. Addingnoise 
an be done by the following:>>I=imread('ri
e.png');>>I=im2double(I);>>Na=.15*randn(256);>>I_add=I+Na;>>figure(1),imshow(I_add) 2



Noti
e that Na is a 256x256 matrix of independent normal variables withmean zero and standard deviation :15. For the multipli
ative noise we do:>>Nm=.3*randn(256)+1;>>I_mult=I.*Nm;>>figure(2),imshow(I_mult)You should try the above for di�erent varian
es. Noti
e that multipli
ativenoise should have mean 1 if you want it to be unbiased.Figure 1 shows one realization of the multipli
ative noise above (sin
enoise is random, it should be di�erent every time you use randn or rand).2.2 Impulsive noiseNow, try to distort the image by adding some `pepper-and-salt' to it. Bythis, we mean that every pixel have 
han
e p of be
oming either bla
k orwhite (with equal probability), independent of ea
h other. This 
an be doneby a uniformly distributed random number U in the range [0; 1℄ for ea
hpixel and set the 
orresponding pixel value to bla
k if U < p=2 and to whiteif U > 1� p=2. In Matlab 
ode this might look like:>>U=rand(256); %256x256 independent U[0,1℄ variables>>p=.1;>>I_ps=I;>>I_ps(find(U<p/2))=0;>>I_ps(find(U>1-p/2))=1;>>figure(3),imshow(I_ps)Try this for di�erent p-values and look at the resulting, 
orrupted image.2.3 FilteringNow you may ask yourself the following questions: How 
an these di�erentkind of noise 
orrupted images be restored and does the noise degrade theperforman
e of image analysis pro
edures?To get a feeling for this, you should apply the �lters from Part I inComputer Exer
ise 2 on the three noise-
orrupted images. Try also themedian �lter (implemented in Matlab as medfilt2); for whi
h of the threedi�erent kinds of noise does this �lter restore the image parti
ularly well?In Figure 2, the di�eren
e of applying Prewitt's edge dete
tion �lter (seeComputer Exer
ise 2) to the original versus the noise-
orrupted image, isillustrated.
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Figure 2: The result after applying Prewitt's �lter to the original `ri
e.png'image (left), and the noise-
orrupted image in Figure 1 (right).3 Simulation of Markov Random FieldsAn appealing way of modelling the dependen
e between pixel values at dif-ferent sites is by a Markov Random Field. Let X = (Xs; s 2 S) be a set ofrandom variables taking values in the set V . We say that X is a MarkovRandom Field with respe
t to the neighbourhood system (Ns; s 2 S) ifPr (Xs = x jXt; t 6= s) = Pr (Xs = x jXt; t 2 Ns); x 2 V; s 2 S (1)where S denotes the set of pixel lo
ations (sites).In words (and somewhat loosely), what equation (1) says, is simply thatthe pixel value at s 2 S, given all the other pixel values, only depends onthe values of the pixels neighbouring (with respe
t to the neighbourhoodsystem Ns) to s. See Chapter 3 in the Le
ture Notes [3℄.3.1 The Ising ModelTo be 
on
rete, let S be the verti
es in the square latti
e of size N and letthe neighbourhood system be given by, for 1 < i; j < N (i.e. for non-bordersites) Ns = f(i � 1; j); (i + 1; j); (i; j � 1); (i; j + 1)g (2)and let Xs take values in V = f�1; 1g. The Ising Model says thatPr (Xs = +1jXt; t 2 Ns) = exp(2�(X+s �X�s ))1 + exp(2�(X+s �X�s )) (3)where X+s and X�s denotes the number of neighbours of s taking the value+1 and -1, respe
tively. Furthermore, � is a parameter 
alled the inversetemperature. 4



3.2 The Gibbs SamplerA widely used algorithm for simulation of Markov Random Fields is theGibbs Sampler. It is a so 
alled Markov Chain Monte Carlo (MCMC)method and it looks like this1. Choose site s 2 S either randomly (uniformly over S) or deterministi-
ally (taking ea
h site row-wise from left to right).2. Examine the neighbourhood to s, Ns.3. Sample the (new) pixel value of a

ording to the 
onditional distribu-tion given the neighbours (Xt; t 2 Ns) to s. Noti
e that it does notmatter what the value of the site is, only the values of its neighbours.4. Choose the next site s a

ording to the 
hosen rule, and go to 2.The above should be repeated until we rea
h the stationary distribution ofthe Markov Chain. When this happens is in general not known. Often thereonly exists guidelines for how long you should run your Markov Chain. Inthe examples in this exer
ise we are talking about a maximum of maybe ahundred sweeps (one sweep = one visit per site in a row-wise s
an from leftto right).For a thorough exposition of Markov Chains and MCMC, see H�aggstr�om [2℄,where also the 
on
ept of perfe
t or exa
t sampling is dealt with.3.3 Implementation and simulationThe idea now is to simulate a Markov Random Field or, more spe
i�
, theIsing Model. Choose S to be the verti
es of a square latti
e of size 64(i.e. a square matrix of size 64x64) and let V = f�1; 1g be represented byV = f0; 1g. We use periodi
 boundaries by whi
h we mean that the rightboundary is 
onne
ted to the left boundary and the upper to the lower andvi
e versa.It should be quite straightforward to implement the Gibbs Sampler. Webasi
ally need two fun
tions:� One that looks up the pixel values of the neighbours to a given site.This we already have from CE2, ex
ept that you have to modify it soit 
an handle the periodi
 boundaries.� A fun
tion that handles the update pro
edure of a pixel value. Cal-
ulate the probability p = Pr (Xs = 1jXt; t 2 Ns) given by (3) anddraw a random number U in [0; 1℄. If U � p set the pixel value to 1,otherwise 0. 5



Figure 3: A sample from an MRF using the Potts model with 5 states (theIsing model is a Potts model with 2 states).The starting image 
an be any binary image. The Markov Chain 
onvergesregardless of the initial 
on�guration. The rate of 
onvergen
e may dependon this, though. So, 
hoose a purely random start 
on�guration, i.e. ea
hpixel having a probability of a half of being either bla
k of white, indepen-dently of ea
h other. (However, you are en
ouraged to try other starting
on�gurations.)See the Appendix for the outline of a main program to the Gibbs Sam-pler.3.4 Relevan
e to image analysisYou may ask why we do simulate the Ising model and what does that haveto do with Image Analysis? The answer is that the Ising model is justan example of a Markov Random Field (probably the simplest, non-trivialmodel), whi
h in general 
ould be far more advan
ed. If we expand theset V to the gray s
ale and alter our updating rule to a rule with a largerneighbourhood system and that, at the same time, 
onsiders possible edgesin the image based on prior knowledge of what images `usually looks like'?To illustrate the �rst way to expand the model, �rst look at Figures 3to 5. The image in Figure 3 was 
reated using the Potts model with 5 states(one 
an say that the Potts model is a generalization of the Ising modelto more than two states) in the Gibbs sampler. We think of this image asthe original image. This image is 
orrupted by adding white Gaussian noise6



Figure 4: The image from Figure 3 with added noise.and rounding so that the pixels in the 
orrupted image take values in theoriginal 5 states, resulting in the image in Figure 4.Now, say that we want to re
over the original image (in Figure 3) giventhe image in Figure 4. Sin
e we know the underlying statisti
al model of theoriginal image (the Potts model) we should be able to use this informationfor the re
overy. Here is a possible way of doing this: we run the GibbsSampler on
e again, with the 
orrupted image as a start image, but this timewith a lower temperature (higher �) and as we iterate, slowly de
reasing it.This will make the model less tolerant to spurious 
hanges of intensities,the idea being that the noise should be suppressed. This pro
edure is 
alledsimulated annealing (see [2℄). By 
omparing Figure 5 and 3, we see the were
overed the original image fairly well.So, if we 
ould knew the model that `
reated' a real image, noise redu
-tion would be easy; just plug the distorted image into a Gibbs Sampler withthis model and iterate. The problem here, is naturally the 
omplexity of this(hypotheti
al) model. It is quite fas
inating though and with the in
reasingpower and speed of modern 
omputers the barrier of the immense 
omplex-ity of this task is getting smaller. The ground breaking arti
le regarding thisapproa
h was written by Stuart and Donald Geman [1℄ in 1984, and a lotof resear
h in this area has been done sin
e then. For a more re
ent arti
le,see the one by Song Chun Zhu and David Mumford [4℄.
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Figure 5: The resulting image after 10 iterations of simulated annealing.Referen
es[1℄ Stuart Geman and Donald Geman. Sto
hasti
 relaxation, gibbs distri-butions, and the bayesian restoration of images. IEEE Transa
tions onPattern Analysis and Ma
hine Intelligen
e, pages 721{741, 1984.[2℄ Olle H�aggstr�om. Finite Markov Chains and Algorithmi
 Appli
ations.Cambridge University Press, 2002.[3℄ Mats Rudemo. Image Analysis and Spatial Statisti
s. Dept. of Mathe-mati
al Statisti
s, Chalmers University of Te
hnology, 2003.[4℄ Song Chun Zhu and David Mumford. Prior learning and gibbs rea
tion-di�usion. IEEE Transa
tions on Pattern Analysis and Ma
hine Intelli-gen
e, pages 1236{1250, 1997.Appendix%Outline of a main program for simulation of the Ising model%%Mats K 010208%The parameter 
alled the inverse temperature:beta=.5;%The size of the square image: 8



N=64;%Start image:I=rand(N)<.5;%K=the total number of iterations:K=100;for s=1:K%The two loops below 
onstitute a `sweep'for k=1:Nfor l=1:N%First: look up the neighbours to I(k,l)%Don't forget to take 
are of the periodi
%boundaries:n=neighbours(I,[l,k℄);%Now, sample from the 
onditional distribution:I(k,l)=update_ising(n,beta);endend%Show the result from this sweep and pause for .1 se
onds%This step should be erased when you see that it works%as it should.imshow(I),pause(.1)endimshow(I)
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