SERIK SAGITOV, Chalmers Tekniska Högskola, May 20, 2004

Chapter 9. Testing hypotheses and assessing goodness of fit

1. Hypotheses testing

Choose between two mutually exclusive hypotheses null hypothesis H_0 : the effect of interest is zero alternative H_1 : the effect of interest is not zero H_0 represents an established theory that must be discredited in order to demonstrate some effect H_1

Two types of error

type I error = false positive: reject H_0 when it's true type II error = false negative: accept H_0 when it's false

Test result	Negative: accept H_0	Positive: reject H_0	
If H_0 is true	True negative	False positive	
	specificity = $1 - \alpha$	$\alpha = P(\text{reject } H_0 H_0)$	
If H_1 is true	False negative	True positive	
	$\beta = P(\text{accept } H_0 H_1)$	sensitivity = $1 - \beta$	

Significance test

Test statistic = a function of the data with distinct typical values under H_0 and H_1 Rejection region (RR) of a test a set of values for the test statistic where H_0 is rejected

If test statistic and sample size are fixed, then either $(\alpha \nearrow \beta \searrow)$ or $(\alpha \searrow \beta \nearrow)$, when RR is changed

Significance test approach to choose RR fix an appropriate significance level α find RR from $\alpha = P(\text{test statistic} \in \text{RR}|H_0)$ using the null distribution of the test statistic

Common significance levels: 5%, 1%, 0.1%

2. Large-sample test for proportion

Sample count $Y \sim \text{Bin}(n, p)$, sample proportion $p = \frac{Y}{n}$

For
$$H_0$$
: $p = p_0$ use test statistic $Z = \frac{Y - np_0}{\sqrt{np_0q_0}} = \frac{\hat{p} - p_0}{\sqrt{p_0q_0/n}}$ approximate null distribution: $Z \stackrel{a}{\sim} N(0,1)$

RRs for three composite alternative hypotheses

one-sided
$$H_1$$
: $p > p_0$, $RR = \{Z \ge z_\alpha\}$
one-sided H_1 : $p < p_0$, $RR = \{Z \le -z_\alpha\}$
two-sided H_1 : $p \ne p_0$, $RR = \{Z \ge z_{\alpha/2} \text{ or } Z \le -z_{\alpha/2}\}$

Power function

power of the test (sensitivity): $Pw = P(reject H_0|H_1)$ Power function of the one-sided test

$$Pw(p_1) = P(\frac{Y - np_0}{\sqrt{np_0q_0}} \ge z_\alpha \mid p = p_1)$$

$$\approx 1 - \Phi(\frac{z_\alpha \sqrt{p_0q_0} + \sqrt{n(p_0 - p_1)}}{\sqrt{p_1q_1}}), \quad p_1 > p_0$$

Planning of sample size

given
$$\alpha$$
 and β for H_0 : $p = p_0$, H_1 : $p = p_1$ choose sample size n such that $\sqrt{n} = \frac{z_{\alpha}\sqrt{p_0q_0} + z_{\beta}\sqrt{p_1q_1}}{|p_1 - p_0|}$

Ex 1: extrasensory perception

ESP test: guess the suits of n=100 cards chosen at random with replacement from a deck Number of cards guessed correctly $Y \sim \text{Bin}(100,p)$ $H_0: p=0.25$ (guessing), $H_1: p>0.25$ (ESP ability) Rejection region at 5% significance level $\text{RR} = \{\frac{\hat{p}-0.25}{0.0433} \geq 1.645\} = \{\hat{p} \geq 0.32\} = \{Y \geq 32\}$ Simple alternative $H_1: p=0.30$ power of the test $1-\Phi(\frac{1.645\cdot0.0433-0.5}{0.0458})=32\%$ Sample size required for the 90% power $n=(\frac{1.645\cdot0.0433+1.28\cdot0.0458}{0.05})^2=675$

P-value of the test

P-value is the probability of obtaining data as extreme or more extreme than the current data given H_0 is true

If $P \leq \alpha$, reject H_0 at the significance level α if $P > \alpha$, do not reject H_0 at level α

Difference between P-value and significance level α α can be chosen before the data is observed

Two-sided P-value $= 2 \times$ one-sided P-value

Ex 1: extrasensory perception

If observed $Y_{\rm obs}=30$, then $Z_{\rm obs}=\frac{0.3-0.25}{0.0433}=1.15$ and one-sided $P=P(Z\geq 1.15)=12.5\%$ the result is not significant, do not reject H_0

3. Small-sample test for the proportion

Test statistic $Y \sim \text{Bin}(n, p), H_0: p = p_0$ exact null distibution $Y \sim \text{Bin}(n, p_0)$

if n is small, we can not use normal approximation Significance tests

one-sided
$$H_1$$
: $p > p_0$, $RR = \{Y \ge y_\alpha\}$
one-sided H_1 : $p < p_0$, $RR = \{Y \le y'_\alpha\}$
two-sided H_1 : $p \ne p_0$, $RR = \{Y \ge y_{\alpha/2} \text{ or } Y \le y'_{\alpha/2}\}$

Ex 1: extrasensory perception

ESP test: guess the suits of n=20 cards number of cards guessed correctly $Y \sim \text{Bin}(20, p)$

 $H_0: p = 0.25 \text{ against } H_1: p > 0.25$

Null distribution

Bin(20,0.25) table:
$$\frac{y}{P(Y \ge y)} \begin{vmatrix} 8 & 9 & 10 & 11 \\ .041 & .014 & 0.004 \end{vmatrix}$$

Rejection region at 5% significance level = $\{Y \ge 9\}$ exact significance level = 4.1%

Power function: $Pw(p_1) = P[Y \ge 9 | Y \sim Bin(20, p_1)]$

Warning for "fishing expeditions": the number of false positives in k tests at level α is Pois $(k\alpha)$

4. Tests for mean

Test H_0 : $\mu = \mu_0$ for continuous or discrete data

Large-sample test for mean

PD is not necessarily normal

Test statistic
$$T = \frac{\bar{X} - \mu_0}{s_{\bar{X}}}$$
 approximate null distribution $T \stackrel{a}{\sim} N(0,1)$

Ex 2: radon level in home

Swedish official limit of the radon level in home: year average = 400 disintegrations per second and m³ Data: 36 measurements in your home: $\bar{X} = 450$, s = 180 PD is non-normal, test H_0 : $\mu = 400$ vs H_1 : $\mu \geq 400$ Observed test statistic $T = \frac{450-400}{30} = 1.67$ one-sided P = 0.048, reject H_0 at $\alpha = 5\%$

One-sample t-test

Use for small n, PD must be normal

$$H_0$$
: $\mu = \mu_0$, test statistic: $T = \frac{\bar{X} - \mu_0}{s_{\bar{X}}}$ exact null distribution: $T \sim t_{n-1}$

CI method of hypotheses testing

accept H_0 : $\mu = \mu_0$ at 5% level if a 95% CI covers μ_0 reject H_0 at 5% level if a 95% CI does not cover μ_0

5. Likelihood ratio test

A general method of finding asymptotically optimal tests with the largest power for a given level α

Two simple hypotheses

 H_0 : $\theta = \theta_0$, H_1 : $\theta = \theta_1$, likelihood ratio: $\Lambda = \frac{L(\theta_0)}{L(\theta_1)}$ large Λ : H_0 explains the data set better than H_1 small Λ : H_1 explains the data set better

LRT: reject H_0 for $\Lambda \leq \lambda_{\alpha}$ Neyman-Pearson lemma: LRT is optimal

Nested hypotheses

 $H_0: \theta \in \Omega_0, H: \theta \in \Omega$, nested parameter sets $\Omega_0 \subset \Omega$ alternative hypothesis $H_1: \theta \in \Omega \setminus \Omega_0$

Generalized LRT: reject H_0 for small values of $\frac{L(\hat{\theta}_0)}{L(\hat{\theta})}$

 $\hat{\theta}_0 = \text{maximizes likelihood over } \theta \in \Omega_0$

 $\hat{\theta} = \text{maximizes likelihood over } \theta \in \Omega$

GLRT: reject
$$H_0$$
 for large $\Delta = \log L(\hat{\theta}) - \log L(\hat{\theta}_0)$

Approximate null distribution:

$$2\Delta \stackrel{a}{\sim} \chi_{\mathrm{df}}^2$$
, $\mathrm{df} = \dim(\Omega) - \dim(\Omega_0)$

6. Pearson's chi-square test

Test how well a model fits the data

$$H_0: (p_1, \ldots, p_J) = (p_1(\lambda), \ldots, p_J(\lambda))$$

unknown parameter $\lambda = (\lambda_1, \ldots, \lambda_r), \dim(\Omega_0) = r$

MLE $\hat{\lambda}$ assuming H_0 expected cell counts $E_j = n \cdot p_j(\hat{\lambda})$

Chi-square test statistic:
$$X^2 = \sum_{j=1}^{J} \frac{(O_j - E_j)^2}{E_j}$$

Reject H_0 for large values of $2\Delta \approx X^2$ GLRT: approximate null distribution of X^2 is χ^2_{J-1-r}

df = (number of cells) - 1 - (number of independent parameters estimated from the data)

All <u>expected</u> counts are recommended to be at least 5 combine small cells and recalculate df

Ex 3: red mites

 H_0 : number of red mites on a leaf $\sim \text{Pois}(\lambda)$ $\hat{\lambda} = 1.147, X^2 = 52.8$ $5 \text{ cells, df} = 3, \chi_3^2(0.001) = 16.3, \text{ reject } H_0$

Ex 4: bird hops

 H_0 : no. hops that a bird does between flights $\sim \text{Geom}(p)$ $\hat{p} = 0.358$, $X^2 = 1.86$, number of cells = 7 df = 5, P-value = 0.87, accept H_0

Ex 5: gender ratio

Germany 1889: n = 6115 families with 12 children data: Y_1, \ldots, Y_n numbers of boys in each family Simple model: $Y \sim \text{Bin}(12, 0.5)$ simple H_0 : $p_j = \binom{12}{j-1} \cdot 2^{-12}, j = 1, \ldots, 13$

Expected cell counts $E_j = 6115 \cdot {12 \choose j-1} \cdot 2^{-12}$ $X^2 = 249.2$, df = 12, $\chi_{12}^2(0.005) = 28.3$, reject H_0

уу	$\operatorname{cell} j$	O_j	E_{j}	$\frac{(O_j - E_j)^2}{E_j}$	E_{j}	$\frac{(O_j - E_j)^2}{E_j}$
0	1	7	1.5	20.2	2.3	9.6
1	2	45	17.9	41.0	26.1	13.7
2	3	181	98.5	69.1	132.8	17.5
3	4	478	328.4	68.1	410.0	11.3
4	5	829	739.0	11.0	854.2	0.7
5	6	1112	1182.4	4.2	1265.6	18.6
6	7	1343	1379.5	1.0	1367.3	0.4
7	8	1033	1182.4	18.9	1085.2	2.5
8	9	670	739.0	6.4	628.1	2.8
9	10	286	328.4	5.5	258.5	2.9
10	11	104	98.5	0.3	71.8	14.4
11	12	24	17.9	2.1	12.1	11.7
12	13	3	1.5	1.5	0.9	4.9
Total		6115	6115	249.2	6115	110.5

More flexible model: $Y \sim \text{Bin}(12, p)$ unspecified p composite H_0 : $p_j = \binom{12}{j-1} \cdot p^{j-1} \cdot q^{13-j}, j = 1, \dots, 13$ $\hat{p} = \frac{\text{number of boys}}{\text{number of children}} = \frac{1 \cdot 45 + 2 \cdot 181 + \dots + 12 \cdot 3}{6115 \cdot 12} = 0.4808$ Expected cell counts $E_j = 6115 \cdot \binom{12}{j-1} \cdot \hat{p}^{j-1} \cdot \hat{q}^{13-j}$ observed test statistic $X^2 = 110.5$ r = 1, df = 11, $\chi_{11}^2(0.005) = 26.76$ reject H_0 at 0.5% level

Possible explanation: probability of a male child p differs from family to family, larger variation