Tentamentsskrivning i matematisk statistik: Basics of Math. Statistics, 3p.

Tid: Tisdagen den 17 oktober 2000 kl 8.45-12.45.

Lärare och Jour: Serik Sagitov, tel. 772-5351, rum MC 1420.

Hjälpmedel: egen formelsamling (fyra A4-blad), utdelade tabeller samt godkänd miniräknare

- 1.(5 points) To a good approximation, the restriction sites for a particular enzyme occur along a chromosome according to a Poisson process with rate $\lambda = 10$ restriction sites per kilobase. Imagine that you have picked up at random two DNA fragments produced by the enzyme. Let L_1 and L_2 be the lengths of the fragments and put $M = L_1 + L_2$.
 - a. Describe the probability distribution of L_1 .
 - b. In what sense the distribution of L_1 is memoryless?
- c. Write down the joint density function for the random variables L_1 and L_2 .
 - d. Compute the mean value and standard deviation of M.
- 2.(5 points) A rare genetic disease is discovered. Although only one in million people carry it, you consider getting screened. You are told that the genetic test is extremely good; it is 100% sensitive (it is always correct if you have the disease) and 99.99% specific (it gives a false positive result only 0.01% of the time).
- a. How would you estimate your chances of having the disease prior the genetic test?
 - b. What is the total probability of getting a positive test result?
- c. Find the posterior probability of having the disease given a positive test result.
- d. Answer to the questions a-c assuming now that the genetic test has produced a positive result and you think about repeating the test.
- 3.(5 points) A particular IQ test was taken by a sample of 22 subjects with the sample mean and sample variance computed to be 107 and 241. To see if the population mean is significantly different from 100
 - a) state a simple null hypothesis and a two-sided alternative hypothesis;
 - b) apply the one-sample t-test at 5% significance level;
 - c) compute the p-value of the test;
- d) using an appropriate confidence interval find if the population IQ-mean is significantly different from 100 at 1% significance level.
 - 4.(5 points) Which of the following statements are correct? Explain.
- a. The width of a 99% confidence interval is twice the width of an 80% confidence interval.

- b. If the variance of an unbiased estimate tends to zero as the sample size n tends to infinity, the estimate is consistent.
- c. If a chi-square test statistic with 5 degrees of freedom has a value 13, the p-value is less than 2.5% and greater than 1%.
- d. The probability that the null hypothesis is correctly rejected is equal to the power of the test.
- 5.(5 points) The joint frequency function of two r.v. X and Y is given with one ommission:

	x=1	x=2	x=3
y=1	.20	.15	?
y=2	.05	.15	.10
y=3	.00	.10	.25

- a. Find the marginal frequency functions of X and Y.
- b. Compute E(X), $E(X^2)$, Var(X), and σ_X .
- c. Find the conditional expectations E(X|Y=1), E(X|Y=2), E(X|Y=3).
- d. Verify the Law of Total Expectation using your answers to a-c.
- 6.(5 points) Given the DNA sequence

GTG CAC TGG ACT GCT GAG GAG AAG

and using the Dirichlet distribution with parameters $\alpha_A = 3$, $\alpha_C = 2$, $\alpha_G = 2$, $\alpha_T = 3$ as the prior distribution for the four nucleotide frequences (p_A, p_C, p_G, p_T)

- a) compute the prior mean values for the four nucleotide frequences;
- b) find the posterior joint distribution for (p_A, p_C, p_G, p_T) ;
- c) compute the posterior mean estimates for the four nucleotide frequences;
- d) compare the posterior mean estimates with the maximum likelihood estimates for (p_A, p_C, p_G, p_T) .

Partial answers and solutions are also welcome. Good luck!

ANSWERS

1a. The length of a DNA fragment is $L_1 \in Exp(10)$ if measured in kilobases or if measured in basepaires $L_1 \in Geom(0.01)$.

1b.
$$P(L_1 > x + y | L_1 > x) = P(L_1 > y)$$
.

1c. Due to independence between L_1 and L_2 when measured in kb

$$f_{L_1L_2}(x,y) = f_{L_1}(x)f_{L_2}(y) = 100 \cdot \exp(-10(x+y)).$$

1d. According to the formulas for the exponential distribution

$$E(M) = E(L_1) + E(L_2) = \frac{1}{10} + \frac{1}{10} = 0.2 \ kb,$$

and due to independence

$$Var(M) = Var(L_1) + Var(L_2) = \frac{1}{100} + \frac{1}{100} = 0.02 \ kb^2, \ \sigma_M = 0.14 \ kb.$$

2a. Prior the genetic test the probability of $B=\{\text{you have the disease}\}\ \text{might}$ be estimated as P(B)=0.000001.

2b. We know that the conditional probabilities of $A=\{\text{positive test result}\}\$ are P(A|B)=1 and P(A|B)=0.0001. Use the LTP to see that P(A)=1.0.000001+ $0.0001 \cdot 0.999999 = 0.000101.$

2c. According to Bayes' formula: $P(B|A) = \frac{1 \cdot 0.000001}{0.000101} = 0.0099$. 2d. Prior the second test the probability of B is $P^*(B) = P(B|A) = 0.01$ and according to the LTP the probability of $C=\{\text{second positive test result}\}$ is $P^*(C)=1\cdot 0.01+0.0001\cdot 0.99=0.0101$. Thus the posterior probability of having the disease after two positive results is $P^*(B|C) = \frac{1 \cdot 0.01}{0.0101} = 0.99$.

3a. $H_0: \mu=100$ vs. $H_A: \mu\neq 100$ 3b. The observed T-score: $\frac{107-100}{\sqrt{241/22}}=2.115$ is greater than the critical level $t_{21}(0.025)=2.08$. Therefore H_0 is rejected at 5% significance level.

3c. According to Table 4 the p-value of the t-test lies between 2% and 5%beeing closer to the latter.

3d. Assuming that the IQ-score is normally distributed we calculate the exact 99% confidence interval of the mean as

$$107 \pm t_{21}(0.005) \cdot \sqrt{241/22} = 107 \pm 9.37.$$

Since the interval covers the value 100 we accept H_0 at 1% significance level.

4a. Correct with the confidence interval formula $X \pm z(\frac{\alpha}{2}) \cdot \frac{s}{\sqrt{n}}$ in mind.

4c. Correct, because due to Table 3 $\chi_5^2(0.025)=12.83$ and $\chi_5^2(0.01)=15.09$.

4d. Correct.

5a.
$$P(X = 1)=0.25$$
, $P(X = 2)=0.4$, $P(X = 3)=0.35$; $P(Y = 1)=0.35$, $P(Y = 2)=0.3$, $P(Y = 3)=0.35$.

5b.
$$E(X)=2.1$$
, $E(X^2)=5$, $Var(X)=0.59$, $\sigma_X=0.77$.,

5c.
$$E(X|Y=1)=1.43$$
, $E(X|Y=2)=2.17$, $E(X|Y=3)=2.71$.

5d.
$$E(X)=1.43\times0.35+2.17\times0.3+2.71\times0.35=2.1$$
.

6a.
$$E(p_A) = \frac{3}{10}$$
, $E(p_C) = \frac{2}{10}$, $E(p_G) = \frac{2}{10}$, $E(p_T) = \frac{3}{10}$.

6c.
$$\hat{p}_A = \frac{9}{34} = 0.265$$
, $\hat{p}_C = \frac{6}{34} = 0.177$, $\hat{p}_G = \frac{12}{34} = 0.353$, $\hat{p}_T = \frac{7}{34} = 0.206$.

6a. $E(p_A) = \frac{3}{10}$, $E(p_C) = \frac{2}{10}$, $E(p_G) = \frac{2}{10}$, $E(p_T) = \frac{3}{10}$. 6b. Dirichlet(9,6,12,7). 6c. $\hat{p}_A = \frac{9}{34} = 0.265$, $\hat{p}_C = \frac{6}{34} = 0.177$, $\hat{p}_G = \frac{12}{34} = 0.353$, $\hat{p}_T = \frac{7}{34} = 0.206$. 6d. MLE $\hat{p}_A = \frac{6}{24} = 0.25$, $\hat{p}_C = \frac{4}{24} = 0.167$, $\hat{p}_G = \frac{10}{24} = 0.417$, $\hat{p}_T = \frac{4}{24} = 0.167$ do not use prior information available.