Basics of Probability and Statistics

Probability theory

mathematical study of uncertainty and random variation

- 1. Probability rules
- 2. Random variables
- 3. Joint distributions

Mathematical statistics

deals with variation in data using probability theory

- 4. Parameter estimation
- 5. Hypotheses testing
- 6. Simple linear regression
- 7. Chi-square tests
- 8. Decision theory and Bayesian inference

Lab assignment

data to be collected: sex, hair color, height, weight

Ex 1: aspirin treatment

Is heart attack risk reduced by taking aspirin? 11034 took placebo and 11037 took aspirin: of them 189 and 104 subsequently experienced heart attacks

1. Probability rules

1.1 Main concepts

random experiment \rightarrow random event \rightarrow probability

Def 1: sample space

 Ω is the set of all possible outcomes in a random experiment (finite or infinite, discrete or continuous)

Def 2: random event A is a subset of Ω , $A \subset \Omega$

Def 3: probability P(A)

number between 0 and 1 says how likely A is to occur P(A) = 1 means A is certain, P(A) = 0 means impossible

1.2 Division rule

Division rule: if all outcomes are equally likely, then $P(A) = \frac{\#(A)}{\#(\Omega)} = \frac{\text{number of favorable outcomes}}{\text{total number of outcomes}}$

Ex 2: coin experiment toss a coin: $\#(\Omega) = 2$

Ex 3: die experiment roll a die: $\#(\Omega) = 6$

Ex 4: sibling sampling

Five families with two children:

three with boy and girl, two with boy and boy

Two sampling experiments

experiment 1: pick a family at random

experiment 2: pick a boy at random, consider his family

Find P(A), $A = \{$ the chosen family has two boys $\}$

1.3 Basic combinatorics

How to count the numbers of outcomes $\#(\Omega)$ in an r-step experiment given $N_i = \#(\text{outcomes in the } i\text{-th step})$, tree of outcomes

Multiplication principle:
$$\#(\Omega) = N_1 \times N_2 \times \ldots \times N_r$$

Ex 5: two dice experiment

Two dice are rolled: $\#(\Omega) = 6 \times 6 = 36$ P(the sum of points on two dice equals 5) = $\frac{4}{36} = \frac{1}{9}$

Ex 6: sampling with replacement

Random experiment:

draw n=3 balls with replacement from a box containing N=4 balls labelled $\{1, 2, 3, 4\}$ $\#(\Omega) = 4 \times 4 \times 4 = 64$

Def 4: permutation and combination

permutation = the ordered set of labels in the sample combination = unordered set of labels in the sample

Number of permutations of N distinct objects taken n at a time: $N \times (N-1) \times \ldots \times (N-n+1) = \frac{N!}{(N-n)!}$

The number of combinations of N distinct objects taken n at a time equals $\binom{N}{n} = \frac{N!}{n!(N-n)!}$

Numbers $\binom{n}{k}$ form Pascal's triangle and are often called binomial coefficients due to the expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \ldots + \binom{n}{n-1}ab^{n-1} + b^n$$

Ex 7: sampling without replacement

Four objects are taken 3 at a time number of permutations = $4 \times 3 \times 2 = 24$ number of combinations = $\frac{24}{3 \times 2 \times 1} = 4$

Def 5: multinomial coefficient

Number of possible allocations in the random experiment: allocate n distinct objects into r distinct boxes box sizes n_1, \ldots, n_r total size of the boxes $n_1 + \ldots + n_r = n$

Multinomial coefficient
$$\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \dots n_r!}$$

In particular binomial coefficient $\binom{n}{k} = \binom{n}{k,n-k}$

Ex 8: Wright-Fisher model

Population model: N=5 of females per generation girls choose mothers at random: $\#(\Omega)=5^5=3125$ N daughters allocated among N mothers Random events

$$A = \{\text{daughter allocation} = (2, 0, 2, 0, 1)\}$$

 $B = \{\text{two mothers have two daughters each}\}$
 $\#(A) = \binom{5}{2,0,2,0,1} = 30, \ P(A) = \frac{30}{3125} = 0.01$
 $\#(B) = \#(A) \times \binom{5}{2,2,1} = 900, \ P(B) = 0.29$

1.4 Addition rule of probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Def 6: intersection and union of two events

 $A \cap B = \{A \text{ and } B\}, A \cup B = \{A \text{ or } B \text{ or both}\}$ Venn diagrams

Def 7: mutually exclusive events

A and B are mutually exclusive, if $P(A \cap B) = 0$ If A and B are mutually exclusive, then

$$P(A \cup B) = P(A) + P(B)$$

Def 8: complementary event

 $\bar{A} = \{A \text{ has not occurred}\}\$

$$P(\bar{A}) = 1 - P(A)$$

Ex 9: molar absence

The absence of molars is an autosomal dominant trait consider a son and a grandson of an affected male

 $A = \{\text{son is affected}\}\$ and $B = \{\text{grandson is affected}\}\$

 $A \cap B = \{ \text{both the son and grandson are affected} \}$

 $A \cup B = \{\text{either son or grandson or both are affected}\}$

Compute P(A), P(B), $P(A \cap B)$, and $P(A \cup B)$

hint: $B \subset A$, that is event B implies event A

1.5 Conditional probability

Def 9: joint probability of two events $P(A \cap B)$

Def 10: conditional probability $P(A|B) = \frac{P(A \cap B)}{P(B)}$

of a random event A given that event B has occurred

Multiplication rule of probability
$$P(A \cap B) = P(A|B)P(B)$$

$$P(A \cap B \cap C) = P(A|B \cap C)P(B|C)P(C)$$

The Law of Total Probability (LTP)

$$P(A) = P(A|B)P(B) + P(A|\bar{B})P(\bar{B})$$

Given a partition $\{B_1, B_2, B_3\}$ of Ω

$$P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+P(A|B_3)P(B_3)$$

Def 11: partition $\{B_1, B_2, B_3\}$ of Ω

pairwise mutually exclusive events, $B_1 \cup B_2 \cup B_3 = \Omega$

Ex 10: coin-die experiment

first step: a fair coin is tossed: $P(H) = \frac{1}{2}$, $P(T) = \frac{1}{2}$ second step: a die is rolled once if H or twice if T

Tree of outcomes: 6+36=42 not equally likely outcomes random event $A=\{\text{total die score}=5\}$

Division rule:

$$P(A|H) = \frac{\#(A \cap H)}{\#(H)} = \frac{1}{6}, \ P(A|T) = \frac{\#(A \cap T)}{\#(T)} = \frac{4}{36}$$

Multiplication rule:

$$P(A \cap H) = \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12} \text{ and } P(A \cap T) = \frac{1}{9} \cdot \frac{1}{2} = \frac{1}{18}$$

LTP: $P(A) = \frac{1}{12} + \frac{1}{18} = \frac{5}{36} = 0.139$

1.6 Bayes' formula

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Def 12: prior and posterior probabilities

P(B) the probability of B before a measurement

P(B|A) the probability of B after A is observed

Ex 11: a genetic test

I consider getting screened for a rare genetic disease

$$B = \{I \text{ have the disease}\}$$

prior probabilities $P(B) = 0.000001, P(\bar{B}) = 0.999999$

The genetic test is 99% sensitive and 97% specific

$$A = \{ positive test result \}$$

true and false positive P(A|B) = 0.99, $P(A|\bar{B}) = 0.03$

true and false negative $P(\bar{A}|\bar{B}) = 0.97, P(\bar{A}|B) = 0.01$

The total probability of a positive test result

LTP:
$$P(A) = 0.99 \cdot 0.000001 + 0.03 \cdot 0.999999 = 0.03$$

Posterior probabilities given a positive test result:

$$P(B|A) = \frac{0.99 \cdot 0.000001}{0.03} = 0.000033, P(\bar{B}|A) = 0.999967$$

After the first positive result I will take the second test updated prior probabilities

$$P(B|A) = 0.000033, P(\bar{B}|A) = 0.999967$$

 $C = \{ \text{second test result is positive} \}$

$$P(C|A) = 0.99 \cdot 0.000033 + 0.03 \cdot 0.999967 = 0.03$$

$$P(B|A \cap C) = \frac{0.99 \cdot 0.000033}{0.03} = 0.0011$$

$$P(\bar{B}|A \cap C) = 0.9989$$

1.7 Independence

Def 13: independent events

Events A and B are called independent if knowing that one event has occurred gives no information about the other event: P(A|B) = P(A) and P(B|A) = P(B)

A and B are independent if
$$P(A \cap B) = P(A)P(B)$$

Def 14: mutually independent events

A, B, C are mutually independent if they are pairwise independent and $P(A \cap B \cap C) = P(A)P(B)P(C)$

Ex 12: Mendelian segregation

One gene with two alleles A (dominant) and a (recessive) offspring genotype of the cross $Aa \times Aa$:

$$P(AA) = P(aa) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}, P(Aa) = 1 - \frac{1}{4} - \frac{1}{4} = \frac{1}{2}$$

Phenotype 3:1 ratio: $P(F_A) = P(AA \cup Aa) = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$

Two genes with dominant A, B and recessive a, b alleles phenotype ratio for the offspring of the cross $\frac{AB}{ab} \times \frac{AB}{ab}$

$$P(F_{Ab}|AA) = P(\frac{Ab}{Ab}|AA) = p^2$$
, where $p = P(\text{crossover})$
 $P(F_{Ab}|Aa) = P(\frac{Ab}{ab}|Aa) = pq$, where $q = 1 - p$

LTP:
$$P(F_{Ab}) = p^2 \cdot \frac{1}{4} + pq \cdot \frac{1}{2} = \frac{1-q^2}{4}$$

 $P(F_{AB}) = P(F_A) - P(F_{Ab}) = \frac{3}{4} - \frac{1-q^2}{4} = \frac{1}{2} + \frac{q^2}{4}$
Unlinked genes $p = q = \frac{1}{2}$ give the phenotype ratio 9:3:3:1
 $P(F_{AB}) = \frac{9}{16}$, $P(F_{Ab}) = P(F_{aB}) = \frac{3}{16}$, $P(F_{ab}) = \frac{1}{16}$

Ex 13: two tossings - one placing

Toss two fair coins, then for the third coin choose H if two heads or two tails choose T if one heads one tails

The three coin outcomes are pairwise independ

The three coin outcomes are pairwise independent despite mutual dependence: $P(T_1 \cap T_2 \cap T_3) = 0$

Ex 14: did Mendel cheat?

Let I be a dominant phenotype offspring of $Aa \times Aa$ $D = \{I' \text{s genotype is } AA\}, \bar{D} = \{I' \text{s genotype is } Aa\}$ $C = \{\text{all 10 offspring of } I \times I \text{ have dom. phenotype}\}$

Mendel's classification rule: if C, then accept D misclassification probability $P(C|\bar{D})=(\frac{3}{4})^{10}=0.056$ specificity $P(\bar{C}|\bar{D})=0.944$, sensitivity P(C|D)=1

Fisher: Mendel's observed ratio Aa:AA had to be closer to 0.63:0.37 rather than to 0.67:0.33 LTP: $P(C) = P(C|D) \cdot \frac{1}{3} + P(C|\bar{D}) \cdot \frac{2}{3} = 0.37$

Ex 15: all-female disorder

Sex-biased condition: only girls in an affected family $S = \{\text{the family is affected}\}\$ population prevalence of the disorder P(S) = 0.01 Consider a family with seven children

$$A = \{\text{all seven children are girls}\}, P(A|S) = 1$$

 $P(A|\bar{S}) = 0.0078, P(A) = 0.0177, P(S|A) = 0.5643$