Optional

Homework 2 in TMS115 Probability and Stochastic Processes, 2005/2006

• There are 10 total points in the homework. One needs 7.5 points for a bonus of 2 points out of 30 in the written examination.

• The dead-line for submission of the solution is 2005-10-14. Electronic submission of pdf or ps files is very welcome.

• Please put your surname first.

Problem 1. The random variables X_1, X_2 , and X_3 are jointly Gaussian. Let

$$Y_1 = X_1 + X_2$$
, $Y_2 = X_2 + X_3$, $Y_3 = X_1 + X_3$.

(2)

(1)

Show that Y_1 , Y_2 , and Y_3 are jointly Gaussian.

Problem 2. Consider a Poisson process X(t) with rate λ , and suppose that each time an event occurs it is classified as either a type 1 or a type 2 event. Suppose further that the event is classified as a type 1 event with probability p and a type 2 event with probability 1 - p. Let $X_1(t)$ and $X_2(t)$ denote the number of type 1 and type 2 events, respectively, occurring in [0, t].

- (a) Show that the processes $\{X_1(t), t \ge 0\}$ and $\{X_2(t), t \ge 0\}$ are both Poisson processes with rates λp and $\lambda(1-p)\}$, respectively. (2)
- (b) Show that $\{X_1(t), t \ge 0\}$ and $\{X_2(t), t \ge 0\}$ are independent. (2)

Problem 3. Consider the random process

$$Y(t) = (-1)^{X(t)}$$

where X(t) is a Poisson process with rate λ .

- (a) Find the mean-value time function and the autocorrelation function of Y(t). Is the process WSS? (2)
- (b) Consider the process Z(t) = AY(t), where A is a random variable, independent of Y(t)and taking on values ± 1 with equal probabilities. Is Z(t) WSS? (1)
- (c) Find the power spectral density of Z(t).