Written test for the examination "Probability and Stochastic Processes", 2005-01-14, 14:00 - 18:00, house V. Lecturer and on duty: Rossitza Dodunekova, 772 3534. Allowed material: Calculators with empty memories, the handbook *Beta*.

There are 30 total points in the examination. One needs 14 points for grade 3 (to pass), 18 points for grade 4, and 24 points for grade 5.

Problem 1. A binary communication channel with $\varepsilon_i \leq 1/2$ is shown in the figure below. Let the input probability of 1 be p, where 0 .

- (a) Assume first that p = 1/2 and $\varepsilon_i < 1/2$. Given that the output is 1, which input is more probable? (1.5)
- (b) Let p be any number in (0, 1) and the channel be symmetric, i.e., $\varepsilon_1 = \varepsilon_2 = \varepsilon \le 1/2$. Find the value of ε for which input and output are independent. Is such a channel appropriate for information transmission? (1.5)

Input			Output
0		$1 - \varepsilon_1$	0
	ε_1		
	ε_2		
1		$1-\varepsilon_2$	1

Problem 2. Messages arrive in a multiplexer according to a Poisson process of rate 10 messages per second. Use the CLT to estimate the probability that more then 600 messages arrive in one minute. (3)

Problem 3. X and Y are independent random variables uniformly distributed in (0,1).

- (a) Compute $E[(X Y)^2]$ (2)
- (b) Let Z = X + Y. Find the pdf of Z. (2)
- (c) Compute E[Z|Z>1]. (2)

Problem 4. N(t) is the Poisson process with parameter λ .

- (a) Find the joint pmf of N(1) and N(4). (2)
- (b) Compute $P\{N(1) > 1, N(4) < 4\}.$ (2)
- (c) Compute the covariance function of the process $X(t) = e^{-t}N(e^{2t})$. (3)

Problem 5. X is a WSS random process with autocorrelation function

$$R_X(\tau) = 16e^{-5|\tau|} \cos 2\pi\tau + 8 \cos 10\pi\tau.$$

Compute the power spectral density of X. What are the average power at zero frequency and the average power of X? (4)

Problem 6. A linear system has an impulse response of the form

$$h(t) = \begin{cases} 5\delta(t) + 3, & \text{if } 0 \le t \le 1\\ 0 & \text{otherwise.} \end{cases}$$

The input to this system is a random sample function of the form

$$X(t) = 2\cos(2\pi t + \theta), \quad -\infty < t < \infty,$$

where θ is a random variable uniformly distributed in $(0, 2\pi)$.

- (a) Find an expression for the output sample function Y(t). (2)
- (b) Find m_Y and Var(Y(t)). (2)

Problem 7. X is WSS with autocorrelation function

$$R_X(k) = 9(1/3)^{|k|}, \quad k = 0, \pm 1, \pm 2, \dots$$

- (a) Find the optimum linear filter for estimating X_n from the observations X_{n-2} and X_{n+1} . (2)
- (b) Compute the mean-square estimation error in (a). (1)