Solution to homework 1 in TMS115

Probability and Stochastic Processes, 2005/2006

- There are 10 total points in the homework. One needs 7.5 points for a bonus of 2 points out of 30 in the written examination.

Problem 1. Denote

$$
\begin{aligned}
R & =\{\text { Getting a question righ }\} \\
T N & =\{\text { You think you know the answer }\} \\
G & =\{\text { You guess the answer }\} .
\end{aligned}
$$

(a)

$$
P(R)=P(R \mid T N) P(T N)+P(R \mid G) P(G)=0.8 \times 0.75+0.2 \times 0.25=0.65
$$

(b)

$$
P(G \mid R)=P(R \mid G) P(G) / P(R)=1 / 13 \approx 0.07
$$

Problem 2. Let X be the random variable denoting the number of hosts attempting to access the channel during one time slot and p_{C} be the probability for a collision during one time slot. We have $X \sim \operatorname{Bin}(n, p)$ and

$$
p_{C}=P\{X \geq 2\}=1-P\{X \leq 1\}=1-(1-p)^{n}-n p(1-p)^{n-1} .
$$

(a) Assume there are k slots. The number Y of the slots wasted due to collisions is a $\operatorname{Bin}\left(k, p_{C}\right)$ random variable. Since $E[Y]=k p_{C}$ the fraction of the wasted slots is p_{C}.
(b) Since $n p=5+1 / n \rightarrow 5$ when $n \rightarrow \infty, X$ is well approximated by a Poisson(5) random variable. Thus $p_{C} \approx 1-e^{-5}-5 e^{-5}=0.96$.

Problem 3.

(a)

$$
\begin{gathered}
P\{\text { signal present } \mid X=k\} \\
=\frac{P\{X=k \mid \text { signal present }\} p}{P\{X=k \mid \text { signal present }\} p+P\{X=k \mid \text { signal absent }\}(1-p)} \\
=\frac{\lambda_{1}^{k} e^{-\lambda_{1}} p}{\lambda_{1}^{k} e^{-\lambda_{1}} p+\lambda_{0}^{k} e^{-\lambda_{0}}(1-p)}
\end{gathered}
$$

and

$$
P\{\text { signal absent } \mid X=k\}=\frac{\lambda_{0}^{k} e^{-\lambda_{0}}(1-p)}{\lambda_{1}^{k} e^{-\lambda_{1}} p+\lambda_{0}^{k} e^{-\lambda_{0}}(1-p)} .
$$

(b) Since $\lambda_{1}>\lambda_{0}$ the inequality

$$
P\{\text { signal present } \mid X=k\}>P\{\text { signal absent } \mid X=k\}
$$

is equivalent to

$$
k>\frac{\ln \frac{1-p}{p}+\lambda_{1}-\lambda_{0}}{\ln \frac{\lambda_{1}}{\lambda_{0}}}
$$

and the threshold T then is

$$
T=\frac{\ln \frac{1-p}{p}+\lambda_{1}-\lambda_{0}}{\ln \frac{\lambda_{1}}{\lambda_{0}}} .
$$

(c) Denote by p_{E} the probability of error. We have

$$
\begin{gathered}
p_{E}=P\{X<T \mid \text { signal present }\} p+P\{X>T \mid \text { signal absent }\}(1-p) \\
=p \sum_{k=0}^{\lfloor T\rfloor} \frac{\lambda_{1}^{k} e^{-\lambda_{1}}}{k!}+(1-p) \sum_{k=\lceil T\rceil}^{\infty} \frac{\lambda_{1}^{k} e^{-\lambda_{1}}}{k!} .
\end{gathered}
$$

Problem 4.

(a)

$$
f_{X, R}(x, r)=f_{X}(x \mid r) f_{R}(r)=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} r^{\alpha} e^{-\lambda(x+r)}
$$

(b)

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f_{X, R}(x, r) d r=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{-\infty}^{\infty} r^{\alpha} e^{-(\lambda+x) r} d r \\
& =\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha+1)}{(\lambda+x)^{\alpha+1}}=\frac{\alpha \lambda^{\alpha}}{(\lambda+x)^{\alpha+1}}, \quad x>0 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
E[X] & =E\left[E[X \mid Y]=E[1 / R]=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} r^{\alpha-2} e^{-\lambda r} d r\right. \\
& =\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha-1)}{\lambda^{\alpha-1}}=\frac{\lambda}{\alpha-1}, \quad \alpha>1 .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =\operatorname{Var}(E[X \mid Y])+E[\operatorname{Var}(X \mid Y)]=\operatorname{Var}(1 / R)+E\left[1 / R^{2}\right] \\
& =2 E\left[1 / R^{2}\right]-(E[1 / R])^{2}=2 \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \cdot \frac{\Gamma(\alpha-2)}{\lambda^{\alpha-2}}-\frac{\lambda^{2}}{(\alpha-1)^{2}} \\
& =\frac{2 \lambda^{2}}{(\alpha-1)(\alpha-2)}-\frac{\lambda^{2}}{(\alpha-1)^{2}}=\frac{\lambda^{2} \alpha}{(\alpha-1)^{2}(\alpha-2)}, \quad \alpha>2 .
\end{aligned}
$$

