
The Bootstrap

0.1 The plug-in principle for finding estimators

Under a parametric model P = {Pθ; θ ∈ Θ} (or a non-parametric P = {PF ;F ∈ F}),
any real-valued characteristic τ of a particular member Pθ (or PF ) can be written as a
mapping from the parameter-space Θ, i.e. τ : Θ 7→ R. If your observations y comes from
Pθ0 and you have derived an estimate θ̂ ∈ Θ of θ0 (for example by Maximum-Likelihood),

it is natural to use τ(θ̂) as an estimate of τ(θ0). This method for constructing estimates

is commonly reffered to as the plug-in principle, since we “plug” the estimate θ̂ into the
mapping τ(·).

Example 0.1 (Independent normals cont.). Assume you have observations as in Example
??, and you are interested in the probability that a new observation Yn+1 ∈ R from the
same distribution exceeds a level u, i.e. τ(θ0) = Φ((u − µ0)/σ0). If you have derived the

Maximum-Likelihood estimate θ̂ = (µ̂, σ̂2) of θ0, τ(θ0) should be estimated by τ(θ̂) =
Φ((u− µ̂)/σ̂), following the plug-in principle. Similarily, if you want to estimate the error
distribution of µ̂ = ȳ then τ(θ0) = F∆(u) = P (Ȳ − µ0 ≤ u) = Φ(u/(σ0/

√
n)) and the

plug-in estimate τ(θ̂) = Φ(u/(σ̂/
√
n)).

Maximum-Likelihood estimators generally work well for parametric models, for non-
parametric models the natural choice of an estimator for F is the empirical distribution
function:

Definition 0.1. The empirical distribution derived from a sample y = (y1, . . . , yn), is the
uniform distribution on the set {y1, . . . , yn} with distribution function

F̂ (u) =
1

n

n∑
i=1

1{yi ≤ u}. (1)

As before we interpret the inequalities pointwise if yi are vectors. Importantly, a random
variable Z ∈ R distributed according to F̂ is discrete and satisfies P (Z = yi) = 1/n,
i = 1, . . . , n if all the values in {y1, . . . , yn} are distinct.

Example 0.2. The plug-in principle also applies with the empirical distribution function
as argument. Here we assume y = (y1, . . . , yn) ∈ Rn is an observation of Y = (Y1, . . . , Yn),
a vector of independent random variables with common distribution function F0 and that
F̂ is the empirical distribution function.

• The expected value: If we want to estimate

τ(F0) = E(Y1) =

∫
u dF0(u),
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Figure 1: Empirical distribution function based on 20 draws from N(0, 1), the dotted line
is true distribution, draws represented by ×:es on the x-axis.

the plug-in estimator is

τ(F̂ ) =

∫
u dF̂ (u) = n−1

n∑
i=1

yi,

i.e. the arithmetic mean.

• The variance: If we want

τ(F0) = V (Y1) = E(E(Y1)− Y1)
2 =

∫
(

∫
u dF0(u)− v)2 dF (v),

the plug-in estimator is

τ(F̂ ) =

∫
(

∫
u dF̂ (u)− v)2 dF̂ (v) = n−1

n∑
i=1

(ȳ − yi)
2.

• Quantiles: If we want

τ(F0) = F−1
0 (p) = inf{u;F0(u) ≥ p},

the plug-in estimator is

τ(F̂ ) = inf{u; F̂ (u) ≥ p} = y(dnpe),

the dnpe:th largest value in {y1, . . . , yn}.



0.2 The plug-in principle for evaluating estimators

Now we have constructed an estimator t(·) for τ using the plug-in principle (or some
other principle), and want to asses its uncertainty. As we have seen, estimating the
error-distribution F∆ is often crucial here. But, under model P, F∆ is of course uniquely
determined by θ0 (or F0) and it is natural to estimate also this function by its plug-in
estimate. I.e. since F∆ is the distribution function of ∆(Y ) = t(Y )− τ(P0), Y ∼ P0, we

can write its plug-in estimate as F∆∗ , the distribution function of ∆(Y ∗) = t(Y ∗)− τ(P̂ ),

Y ∗ ∼ P̂ . The plug-in principle has its limitations here though. It is only for very special
models (like the Normal) and simple estimators t that F ∗

∆ can be computed explicitly. We
have already seen in (??) how computing F∆(u) required an n-dimensional integral over
a complicated set. This is where Monte-Carlo integration comes into the picture; even if
we can’t compute F∆∗ it is often easy to simulate from P̂ (and hence from F∆∗).



Plug-in + Monte-Carlo: The Bootstrap

Algorithm 0.1 (The Bootstrap algorithm).

1. Estimation: Use data y to construct an estimate P̂ of P0.

2. Simulation: Draw B independent samples y∗b ∈ Y , b =
1, . . . , B from the distribution P̂ .

3. Approximation: Compute t∗b = t(y∗b), b = 1, . . . , B, and use
these values to approximate e.g. one of the following plug-in
estimates:

(a) The error distribution function

P (t(Y ∗)−τ(P̂ ) ≤ u) = F∆∗(u) ≈ 1

B

B∑
b=1

1{t∗b−τ(P̂ ) ≤ u}.

(b) Quantiles of the error distribution

F−1
∆∗ (p) ≈ ∆∗(dpBe) = t∗(dpBe) − τ(P̂ ),

the dpBe:th largest value of t∗b,b = 1, . . . , B.

(c) The variance of t(Y ∗),

Var(t(Y ∗)) ≈ 1

B

B∑
b=1

(t∗b − t̄∗)2.

(d) The bias of t

E(t(Y ∗))− τ(P̂ ) ≈ t̄∗ − τ(P̂ )

(e) . . .

Most oftenly, in the above algorithm, τ(P̂ ) = t(y). If we are unable to derive τ(P̂ )
explicitly it can be approximated with a similar procedure.

In the following sections we will discuss how to perform Steps 1-2 under some common
modelling assumptions. First a basic example.

Example 0.3 (Airconditioning). The file aircon.mat contains 12 times between failures
for airconditioning equipment in a Boeing aircraft. A reasonable assumption is that



data are independent with an Exp(θ) distribution. We estimate θ with the arithmetic
mean t(y) = ȳ = 106.4. In the left panel of Figure ?? we have plotted the Exp(106.4)
distribution function together with the empirical distribution function, while the fit is not
perfect the deviation from the Exponential distribution does not look alarming. We want
to construct an upper 95% confidence interval for θ based on t, looking at (??), we want
to set L(y) = 0, U(y) = 106.4− F−1

∆ (0.05) and hence need an estimate of τ = F−1
∆ (0.05).

Using the bootstrap we proceed as follows in Matlab

for b=1:10000
tstar(b)=mean(exprnd(106.4,1,12));

end

which draws a sample of 10000 from T ∗, the arithmetic mean of twelve Exp(106.4) variates.
A histogram is shown in the right panel of Figure ??. The plug-in estimate of θ is obviously
t = 106.4, hence

Delta=tstar-106.4;

is a bootstrap draw from the error distribution and τ can be estimated by the empirical
5% quantile

quantile(Delta,.05)

ans =

-44.8750

and finally, our confidence interval is given by [0, 151.3]. An interval based on Normal
approximation is

106.4-106.4*norminv(.05)/12^(1/2)

ans =

156.9217

where we used that the Exponential distribution has both mean and standard deviation
θ.

If we are interested in the failure intensity 1/θ, this can be estimated by 1/t(y) = 0.0094.
However, this is a biased estimate. The bias is given by E(1/t(Y )) − 1/θ and can be
estimated by the plug-in estimate E(1/t(Y ∗))− 1/t(y), in Matlab

bias=mean(1./tstar)-1/106.4

bias =

8.9401e-004
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Figure 2: Left panel: Fitted Exponential cdf (dashed) and empirical distribution (solid).
Right panel: Histogram of t(y∗).

and we might want to report the bias-corrected estimate 0.0094-0.0009=0.0085 rather
than our original choice.

0.3 The non-parametric Bootstrap for i.i.d. observa-

tions

Here we look at the model corresponding to Example ??, though with possibly vector-
valued yi. That is, y = (y1, . . . , yn) is an observation of Y = (Y1, . . . , Yn), where the Yi:s,
Yi ∈ Rm, are independent random vectors with common distribution function F0 : R

m 7→
[0, 1]. We make no assumptions on the shape of F0.

We have already introduced the empirical distribution function F̂ as the natural estimate
of F . Since the distribution function of Y is

∏n

i=1 F0(ui) we let P̂ be the probability

distribution with distribution function
∏n

i=1 F̂ (ui). This was Step 1. In Step 2 we need
to draw samples y∗b = (y∗b1 , . . . , y∗bn ) from this distribution, but this is easy: Firstly, the
y∗bi :s should be drawn independently of each other. Secondly, the empirical distribution
function is the uniform distribution on {y1, . . . , yn}, hence we just draw n values from this
set randomly with replacement.

Algorithm 0.2 (Drawing y∗ from
∏n

i=1 F̂ (ui)).

1. Let F̂ be the empirical distribution function of a sample y =
(y1, . . . , yn).

2. Draw i1, i2, . . . , in independently from the uniform distribu-
tion on the set of integers {1, 2, . . . , n}.

3. y∗ = (yi1 , yi2, . . . , yin) is now a draw from
∏n

i=1 F̂ (ui).



Example 0.4 (Airconditioning cont.). Lets return to the data in Example ??, but this
time we will be reluctant to assume data are from the Exponential distribution. We will
still assume the failure-times are independent and from the same distribution though, and
we are still interested in the expected failure time. Hence, failure times are independent
with unknown distribution F0. We estimate F0 by the empirical distribution function,
plotted in Figure ??, and proceed as in Example ??, with the difference that new samples
are drawn from

∏12
i=1 F̂ (ui) (here ac is the Matlab vector containing data):

for b=1:10000
i=ceil(12*rand(1,12));
tstar(b)=mean(ac(i));

end

a histogram of the sampled means is given in Figure ??, it looks slightly wider than the
corresponding plot in Figure ?? and indeed

Delta=tstar-106.4;
quantile(Delta,.05)

ans =

-52.7750

gives a wider confidence interval [0, 159.2]. This is not surprising since it is more difficult
to estimate the expected value under the larger non-parametric model.
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Figure 3: Histogram of bootstrap correlations from Example ??



Example 0.5. The above method applies almost as easily to slightly more complicated
data sets. We consider here a set of data relating two score tests, LSAT and GPA,
at a sample of 15 American law schools. Of interest is the correlation between these
measurements. The data are given as

LSAT GPA
------------

576 3.39
635 3.30
558 2.81
578 3.03
666 3.44
580 3.07
555 3.00
661 3.43
651 3.36
605 3.13
653 3.12
575 2.74
545 2.76
572 2.88
594 2.96

and are plotted in Figure ??. They are stored in matrix form in the file matrix law.mat.
Estimating the population correlation by the sample correlation gives θ̂ = 0.776, but how
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Figure 4: Scatterplot of law school data

accurate is this estimate? Our model in this case is that the score-pairs are independent
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Figure 5: Histogram of bootstrap correlations

realisations of (X, Y ) ∼ F0, which we estimate by the empirical distribution function. In
Matlab, we proceed as follows

for b=1:10000
i=ceil(15*rand(1,15));
tstar(b)=corr(law(i,1),law(i,2));

end

a histogram of t(y∗) is given in Figure ??. If we want to test the hypothesis that the
two scores are independent, this can be done by constructing a confidence interval of
Corr(X, Y )

Delta=tstar-0.776;
quantile(Delta,0.95)

áns=0.1706;

This gives a lower interval [0.776−0.1706, 1] = [0.605, 1] that does not contain zero. Hence
the hypothesis can be rejected.

Example 0.6 (Ph-levels). Figure ?? gives histograms of historical and current measure-
ments of Ph levels at each of 149 lakes in Wisconsin. The data are stored in ph.mat as the
vectors ph1 and ph2 respectively. Historical data from 25 of the lakes are missing, so pai-
red sample comparisons are not possible. A reasonable model is that historical and current
measurements are all independent and with distribution functions F0 and G0 respectively,
hence we have parameter-space Θ = F×F , where F is the set of distribution functions on
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Figure 6: Histograms of historical and current Ph levels in Wisconsin lakes

R and P0 is the distribution with distribution function
∏124

i=1 F0(yi)
∏273

i=125 G0(yi), where
y1, . . . , y124 and y125, . . . , y273 correspond to the historical and current measurements res-
pectively. It is of some interest to examine whether the Ph-levels have increased, and
hence we compute the difference in medians of the historical and current populations,
t(y) = Ĝ−1(1/2)− F̂−1(1/2) which turns out to be 0.422. This suggests that either there
has been an increase or that t(y) has overestimated the true value G−1

0 (1/2)− F−1
0 (1/2),

to assess the latter we want to examine the distribution of t(Y ) which we approximate
by the distribution of t(Y ∗) using the Bootstrap. Each bootstrap simulation consists of
simulating from the empirical distribution function of the two separate samples, obtaining
the median of each and differencing.

for b=1:10000
ih=ceil(124*rand(1,124));
ic=ceil(149*rand(1,149));
tstar(b)=median(ph2(ic))-median(ph1(ih));

end

which gives the histogram of bootstrap differences in Figure ??, the fact that all simulated
values exceed 0 give some extra support for the hypothesis that Ph-levels have increased.
The histogram looks rather rugged, would you get a smoother histogram if you were
bootstrapping the difference in means? Why?

The limitation of non-parametric models is that we need a resonably large number of
independent observations from each of the unknown distribution functions involved in the
model in order to construct an accurate estimate of P̂ .



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

700

800

900

1000

Figure 7: Histogram of simulated median differences

0.4 Bootstrapping parametric models

We have already seen an example the Bootstrap in parametric models in Example ??,
here we will look at some more complicated models.

Example 0.7 (Space shuttle challenger). In 1986, the space shuttle Challenger exploded
during take off, killing the seven astronauts aboard. It is believed that the explosion was
caused by the failure of an O-ring (a rubber ring that seals parts of the ship together),
and that the failure was caused by the cold weather at the time of launch (31◦ F). In the
file oring.mat, you will find temperature (in Fahrenheit) and failure data from 23 shuttle
launches, where 1 stands for O-ring failure and 0 no failure. See Figure ??. We want to
model the failure-data as a function of temperature, a common model in this context is the
probit regression model that asserts that observations yi are independent Bernoulli(m(ti)),
where ti is temperature (which we will assume fixed) and m(t) = Φ(β0 + β1t) (this is
just a rather arbitrary way of mapping a linear regression to the unit interval). Hence,

θ = (β0, β1) ∈ R2 = Θ. Further, given an estimate θ̂ it is straightforward to generate
Bootstrap draws y∗ from Pθ̂. The model is an example of a generalised linear model
(GLM), a class of generalisations to the usual linear regression model with Normal errors.
Matlab’s glmfit can be used to estimate θ.

b=glmfit(chall(:,1),[chall(:,2) ones(23,1)],’binomial’,’probit’);

if we are interested in the failure-probability at 65F, an estimate is given by

normcdf(b(1)+b(2)*65)
ans =



0.4975

and to assess the accuracy, we construct a 95% confidence interval using the parametric
Bootstrap

for i=1:1000
ystar=binornd(1,normcdf(b(1)+b(2)*chall(:,1)));
bstar(i,1:2)=glmfit(chall(:,1),[ystar ones(23,1)],’binomial’,’probit’);

end
tstar=normcdf(bstar(:,1)+bstar(:,2)*65);
Delta=tstar-.4975;
C=[.4975-quantile(Delta,.975) .4975-quantile(Delta,.025)]
C =

0.0792 0.7484

which turns out quite wide.
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Figure 8: Data for the Challenger example (circles), fitted regression line (thick solid) and
50 draws from its Bootstrap distribution (dotted)

Example 0.8 (Hormone levels). The file hormone.mat contains a time-series of lutenizing
hormone level in bood-samples. A simple model for time-series is the Gaussian first-order
autoregressive (AR(1)) process defined recursively through

Yi = Xi + µ, Xi = αXi−1 + εi, (2)



where εi, i = 1, . . . , n are independent N(0, σ2) andX0 ∼ N(0, σ2/(1 − α2)), |α| < 1.
Under this specification, Y = (Y1, . . . , Yn) ∼ N((µ, . . . , µ),Σ), where Σ has elements
Σij = α|i−j|σ2/(1− α2) and θ = (µ, σ2, α) ∈ R×R+ × (−1, 1) = Θ. The parameters can
be estimated by their Maximum-Likelihood estimators, but we choose a simpler approach
and estimate µ by the empirical mean, α by the empirical first order autocorrelation and
σ2 by the empirical variance multiplied by 1− α̂:

mhat=mean(y);
ahat=corr(y(1:47),y(2:48));
s2hat=var(y)*(1-ahat);

P̂ is now N(µ̂, Σ̂), and we can simulate from this distribution using the Choleski method

(or Matlabs mvnrnd which is an implementation of the same). The covariance matrix Σ̂
can be computed by

Shat=s2hat/(1-ahat)*ahat.^toeplitz(0:47,0:47);

If we are interested in the properties of our estimate of α, we proceed as follows

for b=1:1000
ystar=mvnrnd(mhat*ones(1,48),Shat)’;
tstar(b)=corr(ystar(1:47),ystar(2:48));

end

In the right panel of Figure ?? we have plotted a histogram of T ∗ and in Figure ?? four
realisations of the timeseries Y ∗.
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Figure 9: Left panel: Hormone level data-set. Right panel: Histogram of T ∗ = α̂∗.

0.5 Bootstrap for semi-parametric models

A semi-parametric model can be viewed as a non-parametric model with some additio-
nal parametric structure. This allows us to relieve some of the rather restrictive model
assumptions in Section ??.
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Figure 10: Four realisations of Y ∗ for the hormone data

0.5.1 Regression models

A regression model tries to establish a functional relationship between a set of responses
y = (y1, . . . , yn) ∈ Rn and a set of covariates/design-variables x = (x1, . . . , xn) ∈ Rd×Rn.
There are two classes of such models, in a regression model with fixed design we view the
covariates x as fixed or user-defined quantities. In a model with random design, both x and
y are observations of random variables. An example of the first could be that we measure
the daily temperature over a period of time, here yi could be measured temperature on
day i and xi = i. An example of the second could be that (xi, yi) are measured weight
an height of a randomly chosen individual, and we want to model weight as a function of
height.

Fixed design linear regression

Consider data y = (y1, . . . , yn) generated from the model

Yi = α + βxi + εi, i = 1, . . . , n, (3)

where β and xi might be a row and column vector respectively, the residuals εi are i.i.d.
from F0 and E(εi) = 0. In the absence of further assumptions on the distribution of
the residuals, this is a semi-parametric model with unknown parameter θ0 = (α0, β0, F0).
Moreover, P0 is the distribution corresponding to distribution function

F (y) =
n∏

i=1

F0(yi − α− βxi).



How do we find an estimate P̂ of this distribution? After all, we actually observe the
residuals εi and hence can’t estimate F0 by the empirical distribution function directly.
The solution is to start with the parametric part, i.e. we first find estimates (α̂, β̂) of α
and β, e.g. by least-squares

(α̂, β̂) = argmin(α,β)

n∑
i=1

(yi − α− βxi)
2. (4)

Then we compute the approximate residuals ε̂i = yi−α̂−β̂xi. These will be approximately
independent realisations from F0 and hence we can estimate the distribution by

F̂ (u) =
1

n

n∑
i=1

1{ε̂i ≤ u},

the empirical distribution of the approximate residuals. Sampling Y ∗ now proceeds as
follows

1. Draw i1, i2, . . . , in independently from the uniform distribution on the set of integers
{1, 2, . . . , n}.

2. y∗ = (y∗1, . . . , y
∗
n) = (α̂ + β̂x1 + ε̂i1 , . . . , α̂ + β̂xn + ε̂in) is now a draw from Y ∗ with

distribution
∏n

i=1 F̂ (yi − α̂− β̂xi).

Example 0.9. We illustrate the above residual Bootstrap on a simulated data-set follo-
wing the slightly more complicated model

Yi = α + βxi + xiεi, i = 1, . . . , n, (5)

where the εi are independent from F0, i.e. the size of the “measurement errors” is propor-
tional to xi. Data is plotted in Figure ??.

In order to estimate F0, we need to construct approximate residuals from this distribution.
First we estimate α and β using least-squares (though a weighted version would have been
more appropriate in this case). Matlab gives

polyfit(x,y,1)

ans =

5.2794 1.2027

where the first is slope β and second intercept α. Residuals are now given by ε̂i =
(yi − α̂− β̂xi)/xi, in Matlab

ehat=(y-1.2027-5.2794*x)./x;

and Bootstrap proceeds by
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Figure 11: Data from the model in ??

for b=1:1000
i=ceil(40*rand(1,40));
estar=ehat(i);
ystar=1.2027+5.2794*x+estar.*x;
tstar(b,1:2)=polyfit(x,ystar,1);
end

In Figure ?? we have plotted 20 draws from the regression line.

Random design linear regression

In random design regression, (xi, yi), i = 1, . . . , n, are independent draws from a bivariate
distribution F0(x, y), with the property

E(Y |X = x) = α + βx. (6)

Bootstrap from this model is equivalent to that of Example ??, i.e. with P̂ correspon-
ding to the distribution

∏n

i=1 F̂ (xi, yi), where F̂ is the (bivariate) empirical distribution
function..

Example 0.10 (Bodies and brains). The left panel of Figure ?? shows average brain
weight (g) against body weight (kg) for 62 species of mammals, in the right panel the
same data is plotted on logarithmic scales, showing an approximate linear relation. Hence,
with y denoting log-brain weight and x log-body weight we might use the model in (??).
Bootstrapping the regression lines proceeds as collows (c.f. Example ??)
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Figure 12: Data and regression lines estimated from each of 20 draws from Y ∗.
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Figure 13: Average body and brain weights for 62 mammals.



x=log(mammals(:,1)); y=log(mammals(:,2));
for b=1:1000

i=ceil(62*rand(1,62));
ystar=y(i);
xstar=x(i);
tstar(b,1:2)=polyfit(xstar,ystar,1);

end

Figure ?? shows a few regression lines estimated from draws from (X∗, Y ∗).
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Figure 14: Bootstrap regression lines for the mammals data.


